Moron Maps and subspaces of N*

what you need to know if you want to work on N*

and you should!

Alan Dow

Department of Mathematics University of North Carolina Charlotte

winter school 2010

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Suppose that $f : \mathbb{N}^* \mapsto K$ is *precisely* 2-to-1 (distinct from \leq 2-to-1). What can then be said of *K* and *f* (how \mathbb{N}^* -like is *K*?)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Suppose that $f : \mathbb{N}^* \mapsto K$ is *precisely* 2-to-1 (distinct from \leq 2-to-1). What can then be said of *K* and *f* (how \mathbb{N}^* -like is *K*?)

What are the results, what are the methods needed, and what are the connected questions along the way?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Suppose that $f : \mathbb{N}^* \mapsto K$ is *precisely* 2-to-1 (distinct from \leq 2-to-1). What can then be said of *K* and *f* (how \mathbb{N}^* -like is *K*?)

What are the results, what are the methods needed, and what are the connected questions along the way?

History to this question (of R. Levy): ?Glazer? and van Douwen's maximal space

(ロ) (同) (三) (三) (三) (○) (○)

Suppose that $f : \mathbb{N}^* \mapsto K$ is *precisely* 2-to-1 (distinct from \leq 2-to-1). What can then be said of *K* and *f* (how \mathbb{N}^* -like is *K*?)

What are the results, what are the methods needed, and what are the connected questions along the way?

History to this question (of R. Levy): ?Glazer? and van Douwen's maximal space

E is a vD space if there is a 1-to-1 map $f : \mathbb{N} \mapsto E$ such that the extension $f = f^{\beta} : \beta \mathbb{N} \mapsto \beta E$ is \leq 2-to-1; and such a space exists. And βE can be embedded into $\beta \mathbb{N}$ so that *f* is a retract.

[vD] for each $y \in \beta E$, $|f^{-1}(y)| = 1$ iff y is a **far point** of E (not a limit of any countable (closed) discrete set).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

[vD] for each $y \in \beta E$, $|f^{-1}(y)| = 1$ iff y is a **far point** of E (not a limit of any countable (closed) discrete set).

Question 1 Does every countable space have a far point? Does every vD space?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

[vD] for each $y \in \beta E$, $|f^{-1}(y)| = 1$ iff y is a **far point** of E (not a limit of any countable (closed) discrete set).

Question 1 Does every countable space have a far point? Does every vD space?

Unfortunately, even if *E* had no far points, $f \upharpoonright \mathbb{N}^*$ is still 1-to-1 at the points of $f^{-1}(E)$. MA_{*ctble*} implies all countable spaces have far points.

(ロ) (同) (三) (三) (三) (○) (○)

[vD] for each $y \in \beta E$, $|f^{-1}(y)| = 1$ iff y is a **far point** of E (not a limit of any countable (closed) discrete set).

Question 1 Does every countable space have a far point? Does every vD space?

Unfortunately, even if *E* had no far points, $f \upharpoonright \mathbb{N}^*$ is still 1-to-1 at the points of $f^{-1}(E)$. MA_{*ctble*} implies all countable spaces have far points.

we could ask many questions about vD spaces, but the question is about 2-to-1 maps and images of \mathbb{N}^* (not of $\beta \mathbb{N}$).

(日) (日) (日) (日) (日) (日) (日)

[vD] for each $y \in \beta E$, $|f^{-1}(y)| = 1$ iff y is a **far point** of E (not a limit of any countable (closed) discrete set).

Question 1 Does every countable space have a far point? Does every vD space?

Unfortunately, even if *E* had no far points, $f \upharpoonright \mathbb{N}^*$ is still 1-to-1 at the points of $f^{-1}(E)$. MA_{*ctble*} implies all countable spaces have far points.

we could ask many questions about vD spaces, but the question is about 2-to-1 maps and images of \mathbb{N}^* (not of $\beta \mathbb{N}$). e.g. **Question 2** if \mathbb{N}^* maps \leq 2-to-1 onto $K \subset \mathbb{N}^*$, does the map lift to a (\leq 2-to-1) map on(to) $\beta \mathbb{N}$?

[Levy \vdash] countable discrete subsets of *K* have closures homeomorphic to $\beta \mathbb{N}$. Hence *K* has *weight* c.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

[Levy \vdash] countable discrete subsets of *K* have closures homeomorphic to $\beta \mathbb{N}$. Hence *K* has *weight* c.

1. is *K* homeomorphic to \mathbb{N}^* ?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

[Levy \vdash] countable discrete subsets of *K* have closures homeomorphic to $\beta \mathbb{N}$. Hence *K* has *weight* \mathfrak{c} .

- 1. is *K* homeomorphic to \mathbb{N}^* ?
- **2**. is *f* locally 1-to-1, i.e. $\mathbb{N}^* \oplus \mathbb{N}^* \mapsto \mathbb{N}^*$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

[Levy \vdash] countable discrete subsets of *K* have closures homeomorphic to $\beta \mathbb{N}$. Hence *K* has *weight* \mathfrak{c} .

- 1. is *K* homeomorphic to \mathbb{N}^* ?
- **2**. is *f* locally 1-to-1, i.e. $\mathbb{N}^* \oplus \mathbb{N}^* \mapsto \mathbb{N}^*$
- 3. is f somewhere 1-to-1 (not irreducible)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

[Levy \vdash] countable discrete subsets of *K* have closures homeomorphic to $\beta \mathbb{N}$. Hence *K* has *weight* \mathfrak{c} .

- 1. is *K* homeomorphic to \mathbb{N}^* ?
- **2**. is *f* locally 1-to-1, i.e. $\mathbb{N}^* \oplus \mathbb{N}^* \mapsto \mathbb{N}^*$
- 3. is f somewhere 1-to-1 (not irreducible)
- 4. is K non-separable, non-ccc?

[Levy \vdash] countable discrete subsets of *K* have closures homeomorphic to $\beta \mathbb{N}$. Hence *K* has *weight* \mathfrak{c} .

- 1. is *K* homeomorphic to \mathbb{N}^* ?
- **2**. is *f* locally 1-to-1, i.e. $\mathbb{N}^* \oplus \mathbb{N}^* \mapsto \mathbb{N}^*$
- 3. is f somewhere 1-to-1 (not irreducible)
- 4. is K non-separable, non-ccc?
- 5. are countable sets C*-embedded?

[Levy \vdash] countable discrete subsets of *K* have closures homeomorphic to $\beta \mathbb{N}$. Hence *K* has *weight* \mathfrak{c} .

- 1. is *K* homeomorphic to \mathbb{N}^* ?
- **2**. is *f* locally 1-to-1, i.e. $\mathbb{N}^* \oplus \mathbb{N}^* \mapsto \mathbb{N}^*$
- 3. is f somewhere 1-to-1 (not irreducible)
- 4. is K non-separable, non-ccc?
- 5. are countable sets C*-embedded?

Item 3 is our starting point for investigation.

For each $a \subset \mathbb{N}$, $f[a^*] \cap f[(\mathbb{N} \setminus a)^*] \subset K$ is useful to consider

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 めんぐ

For each $a \subset \mathbb{N}$, $f[a^*] \cap f[(\mathbb{N} \setminus a)^*] \subset K$ is useful to consider

```
pull this back to \mathbb{N}^*:
```

```
Define J_a = a^* \cap f^{-1}(f[(\mathbb{N} \setminus a)^*]).
```

 J_a is homeomorphic to $J_{\mathbb{N}\setminus a}$ (via $f^{-1} \circ f$); and both to $f[a^*] \cap f[(\mathbb{N} \setminus a)^*] \subset K$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

For each $a \subset \mathbb{N}$, $f[a^*] \cap f[(\mathbb{N} \setminus a)^*] \subset K$ is useful to consider

```
pull this back to \mathbb{N}^*:
```

```
Define J_a = a^* \cap f^{-1}(f[(\mathbb{N} \setminus a)^*]).
```

 J_a is homeomorphic to $J_{\mathbb{N}\setminus a}$ (via $f^{-1} \circ f$); and both to $f[a^*] \cap f[(\mathbb{N} \setminus a)^*] \subset K$.

If *f* is irreducible, each are nowhere dense.

then $\{J_a : a \in \mathcal{P}(\mathbb{N})\}$ is a covering of \mathbb{N}^* by nwd sets, $n(\mathbb{N}^*) \leq \mathfrak{c}$

For each $a \subset \mathbb{N}$, $f[a^*] \cap f[(\mathbb{N} \setminus a)^*] \subset K$ is useful to consider

```
pull this back to \mathbb{N}^*:
```

```
Define J_a = a^* \cap f^{-1}(f[(\mathbb{N} \setminus a)^*]).
```

 J_a is homeomorphic to $J_{\mathbb{N}\setminus a}$ (via $f^{-1} \circ f$); and both to $f[a^*] \cap f[(\mathbb{N} \setminus a)^*] \subset K$.

If *f* is irreducible, each are nowhere dense.

then $\{J_a : a \in \mathcal{P}(\mathbb{N})\}$ is a covering of \mathbb{N}^* by nwd sets, $n(\mathbb{N}^*) \leq \mathfrak{c}$

this connects to studied questions about covering $\ensuremath{\mathbb{N}}^*$ by nwd sets

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Fact: if vD spaces have "lots" of far points, then J_A is a discrete weak P-set of Z

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Fact: if vD spaces have "lots" of far points, then J_A is a discrete weak P-set of Z

Question 3 Can N^{*} be covered by (discrete) [weak] P-sets?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Fact: if vD spaces have "lots" of far points, then J_A is a discrete weak P-set of Z

Question 3 Can \mathbb{N}^* be covered by (discrete) [weak] P-sets? for weak P-sets, I only know "NO" if CH

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Fact: if vD spaces have "lots" of far points, then J_A is a discrete weak P-set of Z

Question 3 Can \mathbb{N}^* be covered by (discrete) [weak] P-sets? for weak P-sets, I only know "NO" if CH

Question 4 Con(MA + no P-set cover) but PFA or MA⊢?

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

There is a dense open $U_0 \subset K$ such that *f* is locally 1-to-1 on $f^{-1}[U_0]$ (stronger than somewhere 1-to-1)

There is a dense open $U_0 \subset K$ such that *f* is locally 1-to-1 on $f^{-1}[U_0]$ (stronger than somewhere 1-to-1)

e.g. put $a \in \mathcal{I}_f$ if f is 2-to-1 and locally 1-to-1 on a^* ; $a = b \cup c$, $f[b^*] = f[c^*] = K \setminus f[(\mathbb{N} \setminus a)^*]$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

There is a dense open $U_0 \subset K$ such that *f* is locally 1-to-1 on $f^{-1}[U_0]$ (stronger than somewhere 1-to-1)

e.g. put $a \in \mathcal{I}_f$ if f is 2-to-1 and locally 1-to-1 on a^* ; $a = b \cup c$, $f[b^*] = f[c^*] = K \setminus f[(\mathbb{N} \setminus a)^*]$ we would say *trivially* 2-to-1 on a^*

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

There is a dense open $U_0 \subset K$ such that *f* is locally 1-to-1 on $f^{-1}[U_0]$ (stronger than somewhere 1-to-1)

e.g. put $a \in \mathcal{I}_f$ if f is 2-to-1 and locally 1-to-1 on a^* ; $a = b \cup c$, $f[b^*] = f[c^*] = K \setminus f[(\mathbb{N} \setminus a)^*]$ we would say *trivially* 2-to-1 on a^*

Set $K_1 = K \setminus U_0$ and $X_1 = f^{-1}[K_1]$, hence $f : X_1 \mapsto K_1$ is 2-to-1 (and repeat)

There is a dense open $U_0 \subset K$ such that *f* is locally 1-to-1 on $f^{-1}[U_0]$ (stronger than somewhere 1-to-1)

e.g. put $a \in \mathcal{I}_f$ if f is 2-to-1 and locally 1-to-1 on a^* ; $a = b \cup c$, $f[b^*] = f[c^*] = K \setminus f[(\mathbb{N} \setminus a)^*]$ we would say *trivially* 2-to-1 on a^*

Set $K_1 = K \setminus U_0$ and $X_1 = f^{-1}[K_1]$, hence $f : X_1 \mapsto K_1$ is 2-to-1 (and repeat)

think of \mathbb{N}^* as $A_0 \oplus_{X_1} B_0$, each $A_0 \setminus X_1$ and $B_0 \setminus X_1$ mapping 1-to-1 onto U_0 (hence essentially to each other)

(日) (日) (日) (日) (日) (日) (日)

There is a dense open $U_0 \subset K$ such that *f* is locally 1-to-1 on $f^{-1}[U_0]$ (stronger than somewhere 1-to-1)

e.g. put $a \in \mathcal{I}_f$ if f is 2-to-1 and locally 1-to-1 on a^* ; $a = b \cup c$, $f[b^*] = f[c^*] = K \setminus f[(\mathbb{N} \setminus a)^*]$ we would say *trivially* 2-to-1 on a^*

Set $K_1 = K \setminus U_0$ and $X_1 = f^{-1}[K_1]$, hence $f : X_1 \mapsto K_1$ is 2-to-1 (and repeat)

think of \mathbb{N}^* as $A_0 \oplus_{X_1} B_0$, each $A_0 \setminus X_1$ and $B_0 \setminus X_1$ mapping 1-to-1 onto U_0 (hence essentially to each other)

need a picture

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

There is a dense open $U_0 \subset K$ such that *f* is locally 1-to-1 on $f^{-1}[U_0]$ (stronger than somewhere 1-to-1)

e.g. put $a \in \mathcal{I}_f$ if f is 2-to-1 and locally 1-to-1 on a^* ; $a = b \cup c$, $f[b^*] = f[c^*] = K \setminus f[(\mathbb{N} \setminus a)^*]$ we would say *trivially* 2-to-1 on a^*

Set $K_1 = K \setminus U_0$ and $X_1 = f^{-1}[K_1]$, hence $f : X_1 \mapsto K_1$ is 2-to-1 (and repeat)

think of \mathbb{N}^* as $A_0 \oplus_{X_1} B_0$, each $A_0 \setminus X_1$ and $B_0 \setminus X_1$ mapping 1-to-1 onto U_0 (hence essentially to each other)

need a picture

similarly there is
$$U_1 \subset K_1$$
 and $A_1 \oplus_{X_2} B_1$ with $X_2 = f^{-1}[K_2 = (K_1 \setminus U_1)]$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

0. Introduction

I. CH

ヘロン 人間 とくほど 人口 と

æ.

0. Introduction

I. CH

▲□▶▲□▶▲□▶▲□▶ □ のへ⊙

0. Introduction

if, e.g. $K_2 = \emptyset$ i.e. $U_1 = K_1$

pick clopen set $W \subset \mathbb{N}^*$ such that $W \cap X_1 = A_1$

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

if, e.g. $K_2 = \emptyset$ i.e. $U_1 = K_1$

pick clopen set $W \subset \mathbb{N}^*$ such that $W \cap X_1 = A_1$

 $K \setminus f[W]$ can be made clopen; etc, etc, K is Parovicenko can be shown

・ コット (雪) (小田) (コット 日)

if, e.g. $K_2 = \emptyset$ i.e. $U_1 = K_1$

pick clopen set $W \subset \mathbb{N}^*$ such that $W \cap X_1 = A_1$

 $K \setminus f[W]$ can be made clopen; etc, etc, *K* is Parovicenko can be shown

 \vdash *K_n* IS empty for some *n* $\in \omega$

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

can all this happen?

if, e.g. $K_2 = \emptyset$ i.e. $U_1 = K_1$

pick clopen set $W \subset \mathbb{N}^*$ such that $W \cap X_1 = A_1$

 $K \setminus f[W]$ can be made clopen; etc, etc, K is Parovicenko can be shown

 \vdash *K_n* IS empty for some *n* $\in \omega$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

if, e.g. $K_2 = \emptyset$ i.e. $U_1 = K_1$

pick clopen set $W \subset \mathbb{N}^*$ such that $W \cap X_1 = A_1$

 $K \setminus f[W]$ can be made clopen; etc, etc, *K* is Parovicenko can be shown

can all this happen?

 \vdash *K_n* IS empty for some *n* $\in \omega$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

THUS CH implies $K \approx \mathbb{N}^*$

Say that $x \in \mathbb{N}^*$ is a tie-point if there are closed sets A, B covering \mathbb{N}^* and $\{x\} = A' \cap B'$; denote this as $\mathbb{N}^* = A \oplus_x B$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Say that $x \in \mathbb{N}^*$ is a tie-point if there are closed sets A, B covering \mathbb{N}^* and $\{x\} = A' \cap B'$; denote this as $\mathbb{N}^* = A \oplus_x B$.

We could further measure $\tau(x) \ge k$ by increasing the number of wings

(ロ) (同) (三) (三) (三) (○) (○)

Say that $x \in \mathbb{N}^*$ is a tie-point if there are closed sets A, B covering \mathbb{N}^* and $\{x\} = A' \cap B'$; denote this as $\mathbb{N}^* = A \oplus_x B$.

We could further measure $\tau(x) \ge k$ by increasing the number of wings

say that *x* is a propeller point (?symmetric tie-point?) if $\mathbb{N}^* = A \oplus_x B$ and there is an autohomeomorphism *h* such that $\{x\} = \operatorname{fix}(h)$ and h[A] = B (i.e. *h* spins the propeller)

(ロ) (同) (三) (三) (三) (○) (○)

Say that $x \in \mathbb{N}^*$ is a tie-point if there are closed sets A, B covering \mathbb{N}^* and $\{x\} = A' \cap B'$; denote this as $\mathbb{N}^* = A \oplus_x B$.

We could further measure $\tau(x) \ge k$ by increasing the number of wings

say that *x* is a propeller point (?symmetric tie-point?) if $\mathbb{N}^* = A \oplus_x B$ and there is an autohomeomorphism *h* such that $\{x\} = \operatorname{fix}(h)$ and h[A] = B (i.e. *h* spins the propeller)

if x_1, x_2 are propeller points, then there is a 2-to-1 f on \mathbb{N}^* such that $K \approx A_1 \oplus_{x_0}^{x_1} B_2$, where

Say that $x \in \mathbb{N}^*$ is a tie-point if there are closed sets A, B covering \mathbb{N}^* and $\{x\} = A' \cap B'$; denote this as $\mathbb{N}^* = A \oplus_x B$.

We could further measure $\tau(x) \ge k$ by increasing the number of wings

say that *x* is a propeller point (?symmetric tie-point?) if $\mathbb{N}^* = A \oplus_x B$ and there is an autohomeomorphism *h* such that $\{x\} = \operatorname{fix}(h)$ and h[A] = B (i.e. *h* spins the propeller)

if x_1, x_2 are propeller points, then there is a 2-to-1 f on \mathbb{N}^* such that $K \approx A_1 \oplus_{x_2}^{x_1} B_2$, where $\mathbb{N}^* = A_1 \oplus_{x_1} B_1$ and $\mathbb{N}^* = A_2 \oplus_{x_2} B_2$ witness the propellers

Say that $x \in \mathbb{N}^*$ is a tie-point if there are closed sets A, B covering \mathbb{N}^* and $\{x\} = A' \cap B'$; denote this as $\mathbb{N}^* = A \oplus_x B$.

We could further measure $\tau(x) \ge k$ by increasing the number of wings

say that *x* is a propeller point (?symmetric tie-point?) if $\mathbb{N}^* = A \oplus_x B$ and there is an autohomeomorphism *h* such that $\{x\} = \operatorname{fix}(h)$ and h[A] = B (i.e. *h* spins the propeller)

if x_1, x_2 are propeller points, then there is a 2-to-1 f on \mathbb{N}^* such that $K \approx A_1 \oplus_{x_2}^{x_1} B_2$, where $\mathbb{N}^* = A_1 \oplus_{x_1} B_1$ and $\mathbb{N}^* = A_2 \oplus_{x_2} B_2$ witness the propellers

I do not know if it's the same to ask for *x* such that there is an involution *f* on \mathbb{N}^* with $\{x\} = fix(f)$; but I think it is interesting to investigate possible "values" for fix(f)

propellers under CH and many copies of \mathbb{N}^\ast

Under CH, every point *x* of \mathbb{N}^* is a tie-point such that $\mathbb{N}^* = A \oplus_x B$ with, in addition, each of $A \approx B \approx \mathbb{N}^*$ (regular closed copies of \mathbb{N}^*);

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

propellers under CH and many copies of \mathbb{N}^\ast

Under CH, every point *x* of \mathbb{N}^* is a tie-point such that $\mathbb{N}^* = A \oplus_x B$ with, in addition, each of $A \approx B \approx \mathbb{N}^*$ (regular closed copies of \mathbb{N}^*); *x* is a propeller point iff *x* is a P-point.

propellers under CH and many copies of $\ensuremath{\mathbb{N}}^*$

Under CH, every point *x* of \mathbb{N}^* is a tie-point such that $\mathbb{N}^* = A \oplus_x B$ with, in addition, each of $A \approx B \approx \mathbb{N}^*$ (regular closed copies of \mathbb{N}^*); *x* is a propeller point iff *x* is a P-point.

for any compact 0-dim'l space X of weight $\leq c$, (e.g. $X = \omega + 1$), $(\omega \times X)^*$ is homeomorphic to \mathbb{N}^*

(日) (日) (日) (日) (日) (日) (日)

propellers under CH and many copies of \mathbb{N}^\ast

Under CH, every point *x* of \mathbb{N}^* is a tie-point such that $\mathbb{N}^* = A \oplus_x B$ with, in addition, each of $A \approx B \approx \mathbb{N}^*$ (regular closed copies of \mathbb{N}^*); *x* is a propeller point iff *x* is a P-point.

for any compact 0-dim'l space X of weight $\leq c$, (e.g. $X = \omega + 1$), $(\omega \times X)^*$ is homeomorphic to \mathbb{N}^*

using $E = \{2n : n \in \omega\}$ and $O = \omega \setminus E$,

propellers under CH and many copies of \mathbb{N}^\ast

Under CH, every point *x* of \mathbb{N}^* is a tie-point such that $\mathbb{N}^* = A \oplus_x B$ with, in addition, each of $A \approx B \approx \mathbb{N}^*$ (regular closed copies of \mathbb{N}^*); *x* is a propeller point iff *x* is a P-point.

for any compact 0-dim'l space X of weight $\leq c$, (e.g. $X = \omega + 1$), $(\omega \times X)^*$ is homeomorphic to \mathbb{N}^*

using $E = \{2n : n \in \omega\}$ and $O = \omega \setminus E$, we see that setting $A = (\omega \times (E \cup \{\omega\}))^*$ and $B = (\omega \times (O \cup \{\omega\}))^*$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

propellers under CH and many copies of $\ensuremath{\mathbb{N}}^*$

Under CH, every point *x* of \mathbb{N}^* is a tie-point such that $\mathbb{N}^* = A \oplus_x B$ with, in addition, each of $A \approx B \approx \mathbb{N}^*$ (regular closed copies of \mathbb{N}^*); *x* is a propeller point iff *x* is a P-point.

for any compact 0-dim'l space X of weight $\leq c$, (e.g. $X = \omega + 1$), $(\omega \times X)^*$ is homeomorphic to \mathbb{N}^*

using $E = \{2n : n \in \omega\}$ and $O = \omega \setminus E$, we see that setting $A = (\omega \times (E \cup \{\omega\}))^*$ and $B = (\omega \times (O \cup \{\omega\}))^*$ show that $\mathbb{N}^* \approx (\omega \times \{\omega\})^* \approx A \oplus_{\mathbb{N}^*} B$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

propellers under CH and many copies of $\ensuremath{\mathbb{N}}^*$

Under CH, every point *x* of \mathbb{N}^* is a tie-point such that $\mathbb{N}^* = A \oplus_x B$ with, in addition, each of $A \approx B \approx \mathbb{N}^*$ (regular closed copies of \mathbb{N}^*); *x* is a propeller point iff *x* is a P-point.

for any compact 0-dim'l space X of weight $\leq c$, (e.g. $X = \omega + 1$), $(\omega \times X)^*$ is homeomorphic to \mathbb{N}^*

using $E = \{2n : n \in \omega\}$ and $O = \omega \setminus E$, we see that setting $A = (\omega \times (E \cup \{\omega\}))^*$ and $B = (\omega \times (O \cup \{\omega\}))^*$ show that $\mathbb{N}^* \approx (\omega \times \{\omega\})^* \approx A \oplus_{\mathbb{N}^*} B$ with \mathbb{N}^* as a propeller set, hence $K_2 \neq \emptyset$ (and iterate)

A D F A 同 F A E F A E F A Q A

propellers under CH and many copies of \mathbb{N}^\ast

Under CH, every point *x* of \mathbb{N}^* is a tie-point such that $\mathbb{N}^* = A \oplus_x B$ with, in addition, each of $A \approx B \approx \mathbb{N}^*$ (regular closed copies of \mathbb{N}^*); *x* is a propeller point iff *x* is a P-point.

for any compact 0-dim'l space X of weight $\leq c$, (e.g. $X = \omega + 1$), $(\omega \times X)^*$ is homeomorphic to \mathbb{N}^*

using $E = \{2n : n \in \omega\}$ and $O = \omega \setminus E$, we see that setting $A = (\omega \times (E \cup \{\omega\}))^*$ and $B = (\omega \times (O \cup \{\omega\}))^*$ show that $\mathbb{N}^* \approx (\omega \times \{\omega\})^* \approx A \oplus_{\mathbb{N}^*} B$ with \mathbb{N}^* as a propeller set, hence $K_2 \neq \emptyset$ (and iterate)

also for any ultrafilter $\mathfrak{U} \in \mathbb{N}^*$, considering $(\omega \times \omega + 1)^*_{\mathfrak{U}}$ (the \mathfrak{U} -limits in the growth) exemplifies there is a propeller point

propellers under CH and many copies of $\ensuremath{\mathbb{N}}^*$

Under CH, every point *x* of \mathbb{N}^* is a tie-point such that $\mathbb{N}^* = A \oplus_x B$ with, in addition, each of $A \approx B \approx \mathbb{N}^*$ (regular closed copies of \mathbb{N}^*); *x* is a propeller point iff *x* is a P-point.

for any compact 0-dim'l space X of weight $\leq c$, (e.g. $X = \omega + 1$), $(\omega \times X)^*$ is homeomorphic to \mathbb{N}^*

using $E = \{2n : n \in \omega\}$ and $O = \omega \setminus E$, we see that setting $A = (\omega \times (E \cup \{\omega\}))^*$ and $B = (\omega \times (O \cup \{\omega\}))^*$ show that $\mathbb{N}^* \approx (\omega \times \{\omega\})^* \approx A \oplus_{\mathbb{N}^*} B$ with \mathbb{N}^* as a propeller set, hence $K_2 \neq \emptyset$ (and iterate)

also for any ultrafilter $\mathfrak{U} \in \mathbb{N}^*$, considering $(\omega \times \omega + 1)^*_{\mathfrak{U}}$ (the \mathfrak{U} -limits in the growth) exemplifies there is a propeller point

my best guess for a $K \not\approx \mathbb{N}^*$ is to have propeller points $\mathbb{N}^* = A_i \oplus_{x_i} B_i$ so that $A_1 \not\approx \mathbb{N}^*$ and/or $A_1 \oplus_{x_2}^{x_1} B_2 \not\approx \mathbb{N}^*$

Can there be tie-points? and if there are, can $A \approx \mathbb{N}^*$?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Can there be tie-points? and if there are, can $A \approx \mathbb{N}^*$?

Major open problem: **Question 5** If *f* embeds \mathbb{N}^* into \mathbb{N}^* , is there a lifting from $\beta \mathbb{N}$ to $\beta \mathbb{N}$?

(ロ) (同) (三) (三) (三) (○) (○)

Can there be tie-points? and if there are, can $A \approx \mathbb{N}^*$?

Major open problem: **Question 5** If *f* embeds \mathbb{N}^* into \mathbb{N}^* , is there a lifting from $\beta \mathbb{N}$ to $\beta \mathbb{N}$?

an ideal $\mathcal{I} \subset \mathcal{P}(\mathbb{N})$ is *ccc over fin* if there is no uncountable almost disjoint family in \mathcal{I}^+ ;

(ロ) (同) (三) (三) (三) (○) (○)

Can there be tie-points? and if there are, can $A \approx \mathbb{N}^*$?

Major open problem: **Question 5** If *f* embeds \mathbb{N}^* into \mathbb{N}^* , is there a lifting from $\beta \mathbb{N}$ to $\beta \mathbb{N}$?

an ideal $\mathcal{I} \subset \mathcal{P}(\mathbb{N})$ is *ccc over fin* if there is no uncountable almost disjoint family in \mathcal{I}^+ ;

similarly a closed set $K \subset \mathbb{N}^*$ can be said to be ccc over fin if there is no uncountable family of disjoint clopen subsets of \mathbb{N}^* each hitting K (this is more general than requiring that K is contained in a ccc space)

the CH, Cohen + OCA tricks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Let \mathcal{I}, \mathcal{J} etc. be families from $\mathcal{P}(\mathbb{N})$

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Let \mathcal{I}, \mathcal{J} etc. be families from $\mathcal{P}(\mathbb{N})$

CH trick ${}^{<\omega_1}\omega_2 \Vdash$ if every \aleph_1 -sized subcollection has a nice extension, then so must \mathcal{I}, \mathcal{J} (in each "proper" extension)

(ロ) (同) (三) (三) (三) (○) (○)

Let \mathcal{I}, \mathcal{J} etc. be families from $\mathcal{P}(\mathbb{N})$

CH trick ${}^{<\omega_1}\omega_2 \Vdash$ if every \aleph_1 -sized subcollection has a nice extension, then so must \mathcal{I}, \mathcal{J} (in each "proper" extension)

[Farah?] ${}^{<\omega}2 \Vdash$ usually no harm done but might be useful

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let \mathcal{I}, \mathcal{J} etc. be families from $\mathcal{P}(\mathbb{N})$

CH trick ${}^{<\omega_1}\omega_2 \Vdash$ if every \aleph_1 -sized subcollection has a nice extension, then so must \mathcal{I}, \mathcal{J} (in each "proper" extension)

[Farah?] ${}^{<\omega}2 \Vdash$ usually no harm done but might be useful

OCA trick: If $\mathbb{X} \subset \mathcal{P}(\mathbb{N})$ and $R \subset [\mathcal{P}(\mathbb{N})]^2$ is open [often simply $x \cap y \neq \emptyset$], and if $\neg \exists \mathbb{X} = \bigcup_n \mathbb{X}_n$ such that $\bigcup_n [\mathbb{X}_n]^2 \cap R$ is empty,

Let \mathcal{I}, \mathcal{J} etc. be families from $\mathcal{P}(\mathbb{N})$

CH trick ${}^{<\omega_1}\omega_2 \Vdash$ if every \aleph_1 -sized subcollection has a nice extension, then so must \mathcal{I}, \mathcal{J} (in each "proper" extension)

[Farah?] ${}^{<\omega}2 \Vdash$ usually no harm done but might be useful

OCA trick: If $\mathbb{X} \subset \mathcal{P}(\mathbb{N})$ and $R \subset [\mathcal{P}(\mathbb{N})]^2$ is open [often simply $x \cap y \neq \emptyset$], and if $\neg \exists \mathbb{X} = \bigcup_n \mathbb{X}_n$ such that $\bigcup_n [\mathbb{X}_n]^2 \cap R$ is empty, then there is a proper poset \mathbb{Q}_R forcing an *R*-homogeneous $\{x_\alpha : \alpha \in \omega_1\} \subset \mathbb{X}$.

Let \mathcal{I}, \mathcal{J} etc. be families from $\mathcal{P}(\mathbb{N})$

CH trick ${}^{<\omega_1}\omega_2 \Vdash$ if every \aleph_1 -sized subcollection has a nice extension, then so must \mathcal{I}, \mathcal{J} (in each "proper" extension)

[Farah?] $\leq \omega 2 \Vdash$ usually no harm done but might be useful

OCA trick: If $\mathbb{X} \subset \mathcal{P}(\mathbb{N})$ and $R \subset [\mathcal{P}(\mathbb{N})]^2$ is open [often simply $x \cap y \neq \emptyset$], and if $\neg \exists \mathbb{X} = \bigcup_n \mathbb{X}_n$ such that $\bigcup_n [\mathbb{X}_n]^2 \cap R$ is empty, then there is a proper poset \mathbb{Q}_R forcing an *R*-homogeneous $\{x_\alpha : \alpha \in \omega_1\} \subset \mathbb{X}$. so, by PFA, such a sequence actually exists

Let \mathcal{I}, \mathcal{J} etc. be families from $\mathcal{P}(\mathbb{N})$

CH trick ${}^{<\omega_1}\omega_2 \Vdash$ if every \aleph_1 -sized subcollection has a nice extension, then so must \mathcal{I}, \mathcal{J} (in each "proper" extension)

[Farah?] $\leq \omega 2 \Vdash$ usually no harm done but might be useful

OCA trick: If $\mathbb{X} \subset \mathcal{P}(\mathbb{N})$ and $R \subset [\mathcal{P}(\mathbb{N})]^2$ is open [often simply $x \cap y \neq \emptyset$], and if $\neg \exists \mathbb{X} = \bigcup_n \mathbb{X}_n$ such that $\bigcup_n [\mathbb{X}_n]^2 \cap R$ is empty, then there is a proper poset \mathbb{Q}_R forcing an *R*-homogeneous $\{x_\alpha : \alpha \in \omega_1\} \subset \mathbb{X}$. so, by PFA, such a sequence actually exists

e.g. if
$$x_{\alpha} = (I_{\alpha}, J_{\alpha}) \in \mathcal{I} \times \mathcal{J}$$
 with $I_{\alpha} \cap J_{\alpha} = \emptyset$, and for $\alpha \neq \beta$,
 $(I_{\alpha} \cap J_{\beta}) \cup (J_{\alpha} \cap I_{\beta}) \neq \emptyset$,

Let \mathcal{I}, \mathcal{J} etc. be families from $\mathcal{P}(\mathbb{N})$

CH trick ${}^{<\omega_1}\omega_2 \Vdash$ if every \aleph_1 -sized subcollection has a nice extension, then so must \mathcal{I}, \mathcal{J} (in each "proper" extension)

[Farah?] ${}^{<\omega}2 \Vdash$ usually no harm done but might be useful

OCA trick: If $\mathbb{X} \subset \mathcal{P}(\mathbb{N})$ and $R \subset [\mathcal{P}(\mathbb{N})]^2$ is open [often simply $x \cap y \neq \emptyset$], and if $\neg \exists \mathbb{X} = \bigcup_n \mathbb{X}_n$ such that $\bigcup_n [\mathbb{X}_n]^2 \cap R$ is empty, then there is a proper poset \mathbb{Q}_R forcing an *R*-homogeneous $\{x_\alpha : \alpha \in \omega_1\} \subset \mathbb{X}$. so, by PFA, such a sequence actually exists

e.g. if
$$x_{\alpha} = (I_{\alpha}, J_{\alpha}) \in \mathcal{I} \times \mathcal{J}$$
 with $I_{\alpha} \cap J_{\alpha} = \emptyset$, and for $\alpha \neq \beta$, $(I_{\alpha} \cap J_{\beta}) \cup (J_{\alpha} \cap I_{\beta}) \neq \emptyset$, then $\overline{\bigcup_{\alpha} I_{\alpha}^*} \cap \overline{\bigcup_{\alpha} J_{\alpha}^*} \neq \emptyset$

OCA trick: If $\mathbb{X} \subset \mathcal{P}(\mathbb{N})$ and $R \subset [\mathcal{P}(\mathbb{N})]^2$ is open [often simply $x \cap y \neq \emptyset$], and if $\neg \exists \mathbb{X} = \bigcup_n \mathbb{X}_n$ such that $\bigcup_n [\mathbb{X}_n]^2 \cap R$ is empty, then there is a proper poset \mathbb{Q}_R forcing an *R*-homogeneous $\{x_\alpha : \alpha \in \omega_1\} \subset \mathbb{X}$. so, by PFA, such a sequence actually exists

(日) (日) (日) (日) (日) (日) (日)

OCA trick: If $\mathbb{X} \subset \mathcal{P}(\mathbb{N})$ and $R \subset [\mathcal{P}(\mathbb{N})]^2$ is open [often simply $x \cap y \neq \emptyset$], and if $\neg \exists \mathbb{X} = \bigcup_n \mathbb{X}_n$ such that $\bigcup_n [\mathbb{X}_n]^2 \cap R$ is empty, then there is a proper poset \mathbb{Q}_R forcing an *R*-homogeneous $\{x_\alpha : \alpha \in \omega_1\} \subset \mathbb{X}$. so, by PFA, such a sequence actually exists

e.g. if
$$x_{\alpha} = (I_{\alpha}, J_{\alpha}) \in \mathcal{I} \times \mathcal{J}$$
 with $I_{\alpha} \cap J_{\alpha} = \emptyset$, and for $\alpha \neq \beta$,
 $(I_{\alpha} \cap J_{\beta}) \cup (J_{\alpha} \cap I_{\beta}) \neq \emptyset$, then $\bigcup_{\alpha} I_{\alpha}^* \cap \bigcup_{\alpha} J_{\alpha}^* \neq \emptyset$

(日) (日) (日) (日) (日) (日) (日)

OCA trick: If $\mathbb{X} \subset \mathcal{P}(\mathbb{N})$ and $R \subset [\mathcal{P}(\mathbb{N})]^2$ is open [often simply $x \cap y \neq \emptyset$], and if $\neg \exists \mathbb{X} = \bigcup_n \mathbb{X}_n$ such that $\bigcup_n [\mathbb{X}_n]^2 \cap R$ is empty, then there is a proper poset \mathbb{Q}_R forcing an *R*-homogeneous $\{x_\alpha : \alpha \in \omega_1\} \subset \mathbb{X}$. so, by PFA, such a sequence actually exists

e.g. if
$$x_{\alpha} = (I_{\alpha}, J_{\alpha}) \in \mathcal{I} \times \mathcal{J}$$
 with $I_{\alpha} \cap J_{\alpha} = \emptyset$, and for $\alpha \neq \beta$, $(I_{\alpha} \cap J_{\beta}) \cup (J_{\alpha} \cap I_{\beta}) \neq \emptyset$, then $\overline{\bigcup_{\alpha} I_{\alpha}^*} \cap \overline{\bigcup_{\alpha} J_{\alpha}^*} \neq \emptyset$

CH trick plus OCA trick implies no (ω_2, κ)-gaps for $\kappa \notin \{1, \omega\}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

OCA trick: If $\mathbb{X} \subset \mathcal{P}(\mathbb{N})$ and $R \subset [\mathcal{P}(\mathbb{N})]^2$ is open [often simply $x \cap y \neq \emptyset$], and if $\neg \exists \mathbb{X} = \bigcup_n \mathbb{X}_n$ such that $\bigcup_n [\mathbb{X}_n]^2 \cap R$ is empty, then there is a proper poset \mathbb{Q}_R forcing an *R*-homogeneous $\{x_\alpha : \alpha \in \omega_1\} \subset \mathbb{X}$. so, by PFA, such a sequence actually exists

e.g. if
$$x_{\alpha} = (I_{\alpha}, J_{\alpha}) \in \mathcal{I} \times \mathcal{J}$$
 with $I_{\alpha} \cap J_{\alpha} = \emptyset$, and for $\alpha \neq \beta$, $(I_{\alpha} \cap J_{\beta}) \cup (J_{\alpha} \cap I_{\beta}) \neq \emptyset$, then $\overline{\bigcup_{\alpha} I_{\alpha}^*} \cap \overline{\bigcup_{\alpha} J_{\alpha}^*} \neq \emptyset$

CH trick plus OCA trick implies no (ω_2, κ) -gaps for $\kappa \notin \{1, \omega\}$

or if each $x_{\alpha} = h_{\alpha} : \mathbb{N} \mapsto \mathbb{N}$ is a partial function and $h_{\alpha} \cup h_{\beta}$ is not a function for $\alpha \neq \beta$, then there is no common mod finite extension

gaps and such

OCA trick: If $\mathbb{X} \subset \mathcal{P}(\mathbb{N})$ and $R \subset [\mathcal{P}(\mathbb{N})]^2$ is open [often simply $x \cap y \neq \emptyset$], and if $\neg \exists \mathbb{X} = \bigcup_n \mathbb{X}_n$ such that $\bigcup_n [\mathbb{X}_n]^2 \cap R$ is empty, then there is a proper poset \mathbb{Q}_R forcing an *R*-homogeneous $\{x_\alpha : \alpha \in \omega_1\} \subset \mathbb{X}$. so, by PFA, such a sequence actually exists

e.g. if
$$x_{\alpha} = (I_{\alpha}, J_{\alpha}) \in \mathcal{I} \times \mathcal{J}$$
 with $I_{\alpha} \cap J_{\alpha} = \emptyset$, and for $\alpha \neq \beta$, $(I_{\alpha} \cap J_{\beta}) \cup (J_{\alpha} \cap I_{\beta}) \neq \emptyset$, then $\overline{\bigcup_{\alpha} I_{\alpha}^*} \cap \overline{\bigcup_{\alpha} J_{\alpha}^*} \neq \emptyset$

CH trick plus OCA trick implies no (ω_2, κ) -gaps for $\kappa \notin \{1, \omega\}$

or if each $x_{\alpha} = h_{\alpha} : \mathbb{N} \mapsto \mathbb{N}$ is a partial function and $h_{\alpha} \cup h_{\beta}$ is not a function for $\alpha \neq \beta$, then there is no common mod finite extension

so if \mathcal{H} is a coherent family of functions and $\{\text{dom}(h) : h \in \mathcal{H}\}$ is a P_{ω_2} -ideal, then THERE IS a common mod finite extension

Start with PFA, use the CH trick to pass to the forcing extension by ${}^{<\omega_1}\omega_2$. This leaves $\mathcal{P}(\mathbb{N})$ unchanged.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Start with PFA, use the CH trick to pass to the forcing extension by ${}^{<\omega_1}\omega_2$. This leaves $\mathcal{P}(\mathbb{N})$ unchanged.

let *Q* be a ccc poset of cardinality ω_1 and $\{Y_\alpha : \alpha \in \omega_1\}$ enumerate all (nice) *Q*-names of subsets of \mathbb{N} .

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Start with PFA, use the CH trick to pass to the forcing extension by ${}^{<\omega_1}\omega_2$. This leaves $\mathcal{P}(\mathbb{N})$ unchanged.

let *Q* be a ccc poset of cardinality ω_1 and $\{\dot{Y}_{\alpha} : \alpha \in \omega_1\}$ enumerate all (nice) *Q*-names of subsets of \mathbb{N} .

inductively (or otherwise) choose $\{(c_{\alpha}, d_{\alpha}) : \alpha \in \omega_1\} \subset V \cap \mathcal{P}(\mathbb{N})$, so that, for $\beta < \alpha$, $\Vdash_Q Y_{\beta} \cap (c_{\alpha} \cup d_{\alpha}) \neq^* c_{\alpha}$ (if possible: make them \subset^* increasing)

(日) (日) (日) (日) (日) (日) (日)

Start with PFA, use the CH trick to pass to the forcing extension by ${}^{<\omega_1}\omega_2$. This leaves $\mathcal{P}(\mathbb{N})$ unchanged.

let Q be a ccc poset of cardinality ω_1 and $\{\dot{Y}_{\alpha} : \alpha \in \omega_1\}$ enumerate all (nice) Q-names of subsets of \mathbb{N} .

inductively (or otherwise) choose $\{(c_{\alpha}, d_{\alpha}) : \alpha \in \omega_1\} \subset V \cap \mathcal{P}(\mathbb{N})$, so that, for $\beta < \alpha$, $\Vdash_Q Y_{\beta} \cap (c_{\alpha} \cup d_{\alpha}) \neq^* c_{\alpha}$ (if possible: make them \subset^* increasing)

then in the extension by Q, $(\alpha, \beta) \in R$ providing $(c_{\alpha} \cap d_{\beta}) \cup (d_{\alpha} \cap c_{\beta}) \neq \emptyset$ satisfies that $[X']^2 \cap R$ is not empty for all uncountable $X' \subset X = \omega_1$

Start with PFA, use the CH trick to pass to the forcing extension by ${}^{<\omega_1}\omega_2$. This leaves $\mathcal{P}(\mathbb{N})$ unchanged.

let Q be a ccc poset of cardinality ω_1 and $\{\dot{Y}_{\alpha} : \alpha \in \omega_1\}$ enumerate all (nice) Q-names of subsets of \mathbb{N} .

inductively (or otherwise) choose $\{(c_{\alpha}, d_{\alpha}) : \alpha \in \omega_1\} \subset V \cap \mathcal{P}(\mathbb{N})$, so that, for $\beta < \alpha$, $\Vdash_Q Y_{\beta} \cap (c_{\alpha} \cup d_{\alpha}) \neq^* c_{\alpha}$ (if possible: make them \subset^* increasing)

then in the extension by Q, $(\alpha, \beta) \in R$ providing $(c_{\alpha} \cap d_{\beta}) \cup (d_{\alpha} \cap c_{\beta}) \neq \emptyset$ satisfies that $[X']^2 \cap R$ is not empty for all uncountable $X' \subset X = \omega_1$ thus this is a freezable gap: no Ysuch that $Y \cap (c_{\alpha} \cup d_{\alpha}) =^* c_{\alpha}$ for all α .

Theorem: [PFA] boundaries of regular closed subsets are not ccc over fin

Theorem: [PFA] boundaries of regular closed subsets are not ccc over fin

Remark: CH implies every closed nowhere dense set is a boundary of a regular closed set

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Theorem: [PFA] boundaries of regular closed subsets are not ccc over fin

Let $A \subset \mathbb{N}^*$ be regular closed.

(ロ) (同) (三) (三) (三) (○) (○)

Theorem: [PFA] boundaries of regular closed subsets are not ccc over fin

Let $A \subset \mathbb{N}^*$ be regular closed. so $\mathcal{I} \cup \mathcal{J}$ is dense, where $a \in \mathcal{I}$ if $a^* \subset A$ and $b \in \mathcal{J}$ if $b^* \cap A = \emptyset$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Theorem: [PFA] boundaries of regular closed subsets are not ccc over fin

Let $A \subset \mathbb{N}^*$ be regular closed. so $\mathcal{I} \cup \mathcal{J}$ is dense, where $a \in \mathcal{I}$ if $a^* \subset A$ and $b \in \mathcal{J}$ if $b^* \cap A = \emptyset$

Lemma: ∂A is ccc over fin implies \mathcal{I} and \mathcal{J} are P-ideals

Theorem: [PFA] boundaries of regular closed subsets are not ccc over fin

Let $A \subset \mathbb{N}^*$ be regular closed. so $\mathcal{I} \cup \mathcal{J}$ is dense, where $a \in \mathcal{I}$ if $a^* \subset A$ and $b \in \mathcal{J}$ if $b^* \cap A = \emptyset$

Lemma: ∂A is ccc over fin implies \mathcal{I} and \mathcal{J} are P-ideals

let $\{a_n : n \in \omega\} \subset \mathcal{I}$ be pairwise disjoint;

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Theorem: [PFA] boundaries of regular closed subsets are not ccc over fin

Let $A \subset \mathbb{N}^*$ be regular closed. so $\mathcal{I} \cup \mathcal{J}$ is dense, where $a \in \mathcal{I}$ if $a^* \subset A$ and $b \in \mathcal{J}$ if $b^* \cap A = \emptyset$

Lemma: ∂A is ccc over fin implies \mathcal{I} and \mathcal{J} are P-ideals

let $\{a_n : n \in \omega\} \subset \mathcal{I}$ be pairwise disjoint;

for each $g \in \mathbb{N}^{\omega}$, let $L_g = \bigcup_n a_n \cap g(n)$.

Theorem: [PFA] boundaries of regular closed subsets are not ccc over fin

Let $A \subset \mathbb{N}^*$ be regular closed. so $\mathcal{I} \cup \mathcal{J}$ is dense, where $a \in \mathcal{I}$ if $a^* \subset A$ and $b \in \mathcal{J}$ if $b^* \cap A = \emptyset$

Lemma: ∂A is ccc over fin implies \mathcal{I} and \mathcal{J} are P-ideals

let $\{a_n : n \in \omega\} \subset \mathcal{I}$ be pairwise disjoint;

for each $g \in \mathbb{N}^{\omega}$, let $L_g = \bigcup_n a_n \cap g(n)$.

since ∂A is ccc over fin there is an $f \in \mathbb{N}^{\omega}$ so that $\partial A \cap (L_g \setminus L_f)^*$ is empty for all $g \in \mathbb{N}^{\omega}$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Theorem: [PFA] boundaries of regular closed subsets are not ccc over fin

Let $A \subset \mathbb{N}^*$ be regular closed. so $\mathcal{I} \cup \mathcal{J}$ is dense, where $a \in \mathcal{I}$ if $a^* \subset A$ and $b \in \mathcal{J}$ if $b^* \cap A = \emptyset$

Lemma: ∂A is ccc over fin implies \mathcal{I} and \mathcal{J} are P-ideals

let $\{a_n : n \in \omega\} \subset \mathcal{I}$ be pairwise disjoint;

for each $g \in \mathbb{N}^{\omega}$, let $L_g = \bigcup_n a_n \cap g(n)$.

since ∂A is ccc over fin there is an $f \in \mathbb{N}^{\omega}$ so that $\partial A \cap (L_g \setminus L_f)^*$ is empty for all $g \in \mathbb{N}^{\omega}$

so pick, for each g, $h_g : L_g \setminus L_f \mapsto 2$ so that $h_g^{-1}(0) \in \mathcal{I}$ and $h_g^{-1}(1) \in \mathcal{J}$.

0. Introduction

${\mathcal I} \text{ and } {\mathcal J} \text{ are P-ideals}$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

${\mathcal I} \text{ and } {\mathcal J} \text{ are P-ideals}$

we just picked, for each g, $h_g : L_g \setminus L_f \mapsto 2$ so that $h_g^{-1}(0) \in \mathcal{I}$ and $h_g^{-1}(1) \in \mathcal{J}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

${\mathcal I} \text{ and } {\mathcal J} \text{ are P-ideals}$

we just picked, for each g, $h_g : L_g \setminus L_f \mapsto 2$ so that $h_g^{-1}(0) \in \mathcal{I}$ and $h_g^{-1}(1) \in \mathcal{J}$.

the L_g 's range over a P_{ω_2} -ideal so

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

${\mathcal I} \text{ and } {\mathcal J} \text{ are P-ideals}$

we just picked, for each g, $h_g : L_g \setminus L_f \mapsto 2$ so that $h_g^{-1}(0) \in \mathcal{I}$ and $h_g^{-1}(1) \in \mathcal{J}$.

the L_g 's range over a P_{ω_2} -ideal so

let $h : \mathbb{N} \setminus L_f \mapsto 2 \mod \text{finite extend } h_g \text{ for all } g \in \mathbb{N}^{\omega}$ ccc argument we'll see later

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

${\mathcal I} \text{ and } {\mathcal J} \text{ are } \mathsf{P}\text{-ideals}$

we just picked, for each g, $h_g : L_g \setminus L_f \mapsto 2$ so that $h_g^{-1}(0) \in \mathcal{I}$ and $h_g^{-1}(1) \in \mathcal{J}$.

the L_g 's range over a P_{ω_2} -ideal so

let $h : \mathbb{N} \setminus L_f \mapsto 2 \mod \text{finite extend } h_g \text{ for all } g \in \mathbb{N}^{\omega}$ ccc argument we'll see later

with $b = h^{-1}(1)$ and $J \subset \omega$ such that $b \cap a_n$ is infinite for each n, we have that $\partial A \cap (b \cap \bigcup_{n \in J} a_n)^*$ is not empty; since ccc over fin implies such a J must be finite, we finish that each of \mathcal{I} and \mathcal{J} are P-ideals

we continue with proof that ∂A is not ccc over fin

we continue with proof that ∂A is not ccc over fin

let $\{a_{\alpha}, b_{\alpha} : \alpha \in \omega_1\}$ be disjoint pairs from $\mathcal{I} \times \mathcal{J}$ chosen so as to be cofinal.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

we continue with proof that ∂A is not ccc over fin

let $\{a_{\alpha}, b_{\alpha} : \alpha \in \omega_1\}$ be disjoint pairs from $\mathcal{I} \times \mathcal{J}$ chosen so as to be cofinal.

the technique (again, later) produces a proper poset collection of names 1-to-1 $\dot{\rho}: 2^{<\omega} \mapsto \mathbb{N}$ and $\{\alpha(f,\xi): \xi \in \omega_1, f \in V \cap 2^{\omega}\} \subset \omega_1$

(日) (日) (日) (日) (日) (日) (日)

we continue with proof that ∂A is not ccc over fin

let $\{a_{\alpha}, b_{\alpha} : \alpha \in \omega_1\}$ be disjoint pairs from $\mathcal{I} \times \mathcal{J}$ chosen so as to be cofinal.

the technique (again, later) produces a proper poset collection of names 1-to-1 $\dot{\rho}: 2^{<\omega} \mapsto \mathbb{N}$ and $\{\alpha(f,\xi): \xi \in \omega_1, f \in V \cap 2^{\omega}\} \subset \omega_1$

so that $\exists n = n(f, \xi, \eta), k = k(f, \xi, \eta)$ satisfying

 $\dot{\rho}(f \upharpoonright k) = n \in (a_{\alpha(f,\xi)} \cap b_{\alpha(f,\eta)}) \cup (a_{\alpha(f,\eta)} \cap b_{\alpha(f,\xi)})$

A D F A 同 F A E F A E F A Q A

we continue with proof that ∂A is not ccc over fin

let $\{a_{\alpha}, b_{\alpha} : \alpha \in \omega_1\}$ be disjoint pairs from $\mathcal{I} \times \mathcal{J}$ chosen so as to be cofinal.

the technique (again, later) produces a proper poset collection of names 1-to-1 $\dot{\rho}$: $2^{<\omega} \mapsto \mathbb{N}$ and $\{\alpha(f,\xi): \xi \in \omega_1, f \in V \cap 2^{\omega}\} \subset \omega_1$

so that $\exists n = n(f, \xi, \eta), k = k(f, \xi, \eta)$ satisfying

 $\dot{\rho}(f \upharpoonright k) = n \in (a_{\alpha(f,\xi)} \cap b_{\alpha(f,\eta)}) \cup (a_{\alpha(f,\eta)} \cap b_{\alpha(f,\xi)})$

set $C_f = \{\rho(f \upharpoonright k) : k \in \omega\} \subset \mathbb{N}$, and $\Gamma_f = \{\alpha(f, \xi) : \xi \in \omega_1\}$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

fix any "generic" filter meeting ω_1 -many dense subsets of this iteration of proper posets, so as to have some uncountable $\mathcal{F} \subset 2^{<\omega}$ and $\{(a_{\alpha}, b_{\alpha}) : \alpha \in \omega_1\} \subset \mathcal{I} \times \mathcal{J}$, and values for $\alpha(f, \xi), n(f, \xi, \eta), k(f, \xi, \eta)$ for all $f \in \mathcal{F}$ and $\xi \in \omega_1$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

fix any "generic" filter meeting ω_1 -many dense subsets of this iteration of proper posets, so as to have some uncountable $\mathcal{F} \subset 2^{<\omega}$ and $\{(a_{\alpha}, b_{\alpha}) : \alpha \in \omega_1\} \subset \mathcal{I} \times \mathcal{J}$, and values for $\alpha(f, \xi), n(f, \xi, \eta), k(f, \xi, \eta)$ for all $f \in \mathcal{F}$ and $\xi \in \omega_1$.

so that for $f \in \mathcal{F}, \xi \neq \eta \in \omega_1$,

 $\rho(f \upharpoonright k) = n \in (a_{\alpha(f,\xi)} \cap b_{\alpha(f,\eta)}) \cup (a_{\alpha(f,\eta)} \cap b_{\alpha(f,\xi)})$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

fix any "generic" filter meeting ω_1 -many dense subsets of this iteration of proper posets, so as to have some uncountable $\mathcal{F} \subset 2^{<\omega}$ and $\{(a_{\alpha}, b_{\alpha}) : \alpha \in \omega_1\} \subset \mathcal{I} \times \mathcal{J}$, and values for $\alpha(f, \xi), n(f, \xi, \eta), k(f, \xi, \eta)$ for all $f \in \mathcal{F}$ and $\xi \in \omega_1$.

so that for $f \in \mathcal{F}$, $\xi \neq \eta \in \omega_1$,

 $\rho(f \upharpoonright k) = n \in (a_{\alpha(f,\xi)} \cap b_{\alpha(f,\eta)}) \cup (a_{\alpha(f,\eta)} \cap b_{\alpha(f,\xi)})$

we obtain that $C_f^* \cap \partial A$ is non-empty for all $f \in \mathcal{F}$ because

$$\partial A \supset \overline{\bigcup_{lpha \in \Gamma_f} (a_lpha \cap C_f)^*} \cap \overline{\bigcup_{lpha \in \Gamma_f} (b_lpha \cap C_f)^*}
eq \emptyset$$

0. Introduction

okay, we freeze a gap

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

we have the gap $\{a_{\alpha}, b_{\alpha} : \alpha \in \omega_1\}$; mod finite increasing and $a_{\alpha} \cap b_{\alpha}$ empty. (enough that a_{α} 's increase)

(ロ) (同) (三) (三) (三) (○) (○)

we have the gap $\{a_{\alpha}, b_{\alpha} : \alpha \in \omega_1\}$; mod finite increasing and $a_{\alpha} \cap b_{\alpha}$ empty. (enough that a_{α} 's increase)

a pair $(\rho, H) \in Q$ if there is an *n* with $\rho : 2^{< n} \stackrel{1-1}{\mapsto} \mathbb{N}$, and $H \in [\omega_1]^{<\omega}$ is such that

for each $\alpha \neq \beta \in H$, and each $t \in 2^n$, there is a k < n with $\rho(t \upharpoonright k) \in (a_{\alpha} \cap b_{\beta}) \cup (a_{\beta} \cap b_{\alpha})$

we have the gap $\{a_{\alpha}, b_{\alpha} : \alpha \in \omega_1\}$; mod finite increasing and $a_{\alpha} \cap b_{\alpha}$ empty. (enough that a_{α} 's increase)

a pair $(\rho, H) \in Q$ if there is an *n* with $\rho : 2^{< n} \stackrel{1-1}{\mapsto} \mathbb{N}$, and $H \in [\omega_1]^{<\omega}$ is such that

for each $\alpha \neq \beta \in H$, and each $t \in 2^n$, there is a k < n with $\rho(t \upharpoonright k) \in (a_{\alpha} \cap b_{\beta}) \cup (a_{\beta} \cap b_{\alpha})$

assume $\{(\rho, H_{\xi}) : \xi \in \omega_1\} \subset Q$; and that $H_{\xi} \cap H_{\eta} = H$ for all $\xi \neq \eta \in \omega_1$; and pairwise "isomorphic"

set
$$A_{\xi} = \bigcap_{\alpha \in H_{\xi} \setminus H} a_{\alpha}$$
 and $B_{\xi} = \bigcap_{\alpha \in H_{\xi} \setminus H} b_{\alpha}$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

we have the gap $\{a_{\alpha}, b_{\alpha} : \alpha \in \omega_1\}$; mod finite increasing and $a_{\alpha} \cap b_{\alpha}$ empty. (enough that a_{α} 's increase)

a pair $(\rho, H) \in Q$ if there is an *n* with $\rho : 2^{< n} \stackrel{1-1}{\mapsto} \mathbb{N}$, and $H \in [\omega_1]^{<\omega}$ is such that

for each $\alpha \neq \beta \in H$, and each $t \in 2^n$, there is a k < n with $\rho(t \upharpoonright k) \in (a_{\alpha} \cap b_{\beta}) \cup (a_{\beta} \cap b_{\alpha})$

assume $\{(\rho, H_{\xi}) : \xi \in \omega_1\} \subset Q$; and that $H_{\xi} \cap H_{\eta} = H$ for all $\xi \neq \eta \in \omega_1$; and pairwise "isomorphic"

set $A_{\xi} = \bigcap_{\alpha \in H_{\xi} \setminus H} a_{\alpha}$ and $B_{\xi} = \bigcap_{\alpha \in H_{\xi} \setminus H} b_{\alpha}$ Let $I_0 = J_0 = \omega_1$, $S_0 = \{i : \exists^{\omega_1} \xi \in I_0 \ i \in A_{\xi}\}$ and $T_0 = \{i : \exists^{\omega_1} \eta \in J_0 \ i \in B_{\xi}\}$

we have the gap $\{a_{\alpha}, b_{\alpha} : \alpha \in \omega_1\}$; mod finite increasing and $a_{\alpha} \cap b_{\alpha}$ empty. (enough that a_{α} 's increase)

a pair $(\rho, H) \in Q$ if there is an *n* with $\rho : 2^{< n} \stackrel{1-1}{\mapsto} \mathbb{N}$, and $H \in [\omega_1]^{<\omega}$ is such that

for each $\alpha \neq \beta \in H$, and each $t \in 2^n$, there is a k < n with $\rho(t \upharpoonright k) \in (a_{\alpha} \cap b_{\beta}) \cup (a_{\beta} \cap b_{\alpha})$

assume $\{(\rho, H_{\xi}) : \xi \in \omega_1\} \subset Q$; and that $H_{\xi} \cap H_{\eta} = H$ for all $\xi \neq \eta \in \omega_1$; and pairwise "isomorphic"

set $A_{\xi} = \bigcap_{\alpha \in H_{\xi} \setminus H} a_{\alpha}$ and $B_{\xi} = \bigcap_{\alpha \in H_{\xi} \setminus H} b_{\alpha}$ Let $I_0 = J_0 = \omega_1$, $S_0 = \{i : \exists^{\omega_1} \xi \in I_0 \ i \in A_{\xi}\}$ and $T_0 = \{i : \exists^{\omega_1} \eta \in J_0 \ i \in B_{\xi}\}$ there is $i_0 \in S_0 \cap T_0$; set $I_1 = \{\xi \in I_0 : i_0 \in A_{\xi}\}$; $J_1 = \{\eta \in J_0 : i_0 \in B_{\eta}\}$

we have the gap $\{a_{\alpha}, b_{\alpha} : \alpha \in \omega_1\}$; mod finite increasing and $a_{\alpha} \cap b_{\alpha}$ empty. (enough that a_{α} 's increase)

a pair $(\rho, H) \in Q$ if there is an *n* with $\rho : 2^{< n} \stackrel{1-1}{\mapsto} \mathbb{N}$, and $H \in [\omega_1]^{<\omega}$ is such that

for each $\alpha \neq \beta \in H$, and each $t \in 2^n$, there is a k < n with $\rho(t \upharpoonright k) \in (a_{\alpha} \cap b_{\beta}) \cup (a_{\beta} \cap b_{\alpha})$

assume $\{(\rho, H_{\xi}) : \xi \in \omega_1\} \subset Q$; and that $H_{\xi} \cap H_{\eta} = H$ for all $\xi \neq \eta \in \omega_1$; and pairwise "isomorphic"

set $A_{\xi} = \bigcap_{\alpha \in H_{\xi} \setminus H} a_{\alpha}$ and $B_{\xi} = \bigcap_{\alpha \in H_{\xi} \setminus H} b_{\alpha}$ Let $I_0 = J_0 = \omega_1$, $S_0 = \{i : \exists^{\omega_1} \xi \in I_0 \ i \in A_{\xi}\}$ and $T_0 = \{i : \exists^{\omega_1} \eta \in J_0 \ i \in B_{\xi}\}$ there is $i_0 \in S_0 \cap T_0$; set $I_1 = \{\xi \in I_0 : i_0 \in A_{\xi}\}$; $J_1 = \{\eta \in J_0 : i_0 \in B_{\eta}\}$ repeat 2^n times getting $\{i_t\}_{t \in 2^n}$

(ロ) (同) (三) (三) (三) (○) (○)