Moron Maps and subspaces of N^{*}

what you need to know if you want to work on N^{*}

and you should!

Alan Dow

Department of Mathematics
University of North Carolina Charlotte
winter school 2010

Connecting Theme

Suppose that $f: \mathbb{N}^{*} \mapsto K$ is precisely 2-to-1 (distinct from ≤ 2-to-1). What can then be said of K and f (how \mathbb{N}^{*}-like is K ?)

Connecting Theme

Suppose that $f: \mathbb{N}^{*} \mapsto K$ is precisely 2 -to-1 (distinct from ≤ 2-to-1). What can then be said of K and f (how \mathbb{N}^{*}-like is K ?)

What are the results, what are the methods needed, and what are the connected questions along the way?

Connecting Theme

Suppose that $f: \mathbb{N}^{*} \mapsto K$ is precisely 2 -to-1 (distinct from ≤ 2-to-1). What can then be said of K and f (how \mathbb{N}^{*}-like is K ?)

What are the results, what are the methods needed, and what are the connected questions along the way?

History to this question (of R. Levy): ?Glazer? and van Douwen's maximal space

Connecting Theme

Suppose that $f: \mathbb{N}^{*} \mapsto K$ is precisely 2 -to-1 (distinct from ≤ 2-to-1). What can then be said of K and f (how \mathbb{N}^{*}-like is K ?)

What are the results, what are the methods needed, and what are the connected questions along the way?

History to this question (of R. Levy): ?Glazer? and van Douwen's maximal space
E is a vD space if there is a 1-to-1 map $f: \mathbb{N} \mapsto E$ such that the extension $f=f^{\beta}: \beta \mathbb{N} \mapsto \beta E$ is ≤ 2-to-1; and such a space exists. And βE can be embedded into $\beta \mathbb{N}$ so that f is a retract.

2-to-1 maps

[vD] for each $y \in \beta E,\left|f^{-1}(y)\right|=1$ iff y is a far point of E (not a limit of any countable (closed) discrete set).

2-to-1 maps

[vD] for each $y \in \beta E,\left|f^{-1}(y)\right|=1$ iff y is a far point of E (not a limit of any countable (closed) discrete set).

Question 1 Does every countable space have a far point? Does every vD space?

2-to-1 maps

[vD] for each $y \in \beta E,\left|f^{-1}(y)\right|=1$ iff y is a far point of E (not a limit of any countable (closed) discrete set).

Question 1 Does every countable space have a far point? Does every vD space?

Unfortunately, even if E had no far points, $f \upharpoonright \mathbb{N}^{*}$ is still 1-to-1 at the points of $f^{-1}(E)$. MA ctble implies all countable spaces have far points.

2-to-1 maps

[vD] for each $y \in \beta E,\left|f^{-1}(y)\right|=1$ iff y is a far point of E (not a limit of any countable (closed) discrete set).

Question 1 Does every countable space have a far point? Does every vD space?

Unfortunately, even if E had no far points, $f \upharpoonright \mathbb{N}^{*}$ is still 1-to-1 at the points of $f^{-1}(E)$. MA ctble implies all countable spaces have far points.
we could ask many questions about vD spaces, but the question is about 2-to-1 maps and images of \mathbb{N}^{*} (not of $\beta \mathbb{N}$).

2-to-1 maps

[vD] for each $y \in \beta E,\left|f^{-1}(y)\right|=1$ iff y is a far point of E (not a limit of any countable (closed) discrete set).

Question 1 Does every countable space have a far point? Does every vD space?

Unfortunately, even if E had no far points, $f \upharpoonright \mathbb{N}^{*}$ is still 1-to-1 at the points of $f^{-1}(E)$. MA ctble implies all countable spaces have far points.
we could ask many questions about vD spaces, but the question is about 2-to-1 maps and images of \mathbb{N}^{*} (not of $\beta \mathbb{N}$). e.g. Question 2 if \mathbb{N}^{*} maps ≤ 2-to- 1 onto $K \subset \mathbb{N}^{*}$, does the map lift to a (≤ 2-to-1) map on(to) $\beta \mathbb{N}$?

Levy's questions: Let $f: \mathbb{N}^{*} \mapsto K$ be 2-to-1

[Levy \vdash] countable discrete subsets of K have closures homeomorphic to $\beta \mathbb{N}$. Hence K has weight c.

Levy's questions: Let $f: \mathbb{N}^{*} \mapsto K$ be 2-to-1

[Levy \vdash] countable discrete subsets of K have closures homeomorphic to $\beta \mathbb{N}$. Hence K has weight c.

1. is K homeomorphic to \mathbb{N}^{*} ?

Levy's questions: Let $f: \mathbb{N}^{*} \mapsto K$ be 2-to-1

[Levy \vdash] countable discrete subsets of K have closures homeomorphic to $\beta \mathbb{N}$. Hence K has weight c.

1. is K homeomorphic to \mathbb{N}^{*} ?
2. is f locally 1 -to-1, i.e. $\mathbb{N}^{*} \oplus \mathbb{N}^{*} \mapsto \mathbb{N}^{*}$

Levy's questions: Let $f: \mathbb{N}^{*} \mapsto K$ be 2-to-1

[Levy \vdash] countable discrete subsets of K have closures homeomorphic to $\beta \mathbb{N}$. Hence K has weight c.

1. is K homeomorphic to \mathbb{N}^{*} ?
2. is f locally 1 -to-1, i.e. $\mathbb{N}^{*} \oplus \mathbb{N}^{*} \mapsto \mathbb{N}^{*}$

3 . is f somewhere 1-to-1 (not irreducible)

Levy's questions: Let $f: \mathbb{N}^{*} \mapsto K$ be 2-to-1

[Levy \vdash] countable discrete subsets of K have closures homeomorphic to $\beta \mathbb{N}$. Hence K has weight c.

1. is K homeomorphic to \mathbb{N}^{*} ?
2. is f locally 1 -to-1, i.e. $\mathbb{N}^{*} \oplus \mathbb{N}^{*} \mapsto \mathbb{N}^{*}$

3 . is f somewhere 1-to-1 (not irreducible)
4. is K non-separable, non-ccc?

Levy's questions: Let $f: \mathbb{N}^{*} \mapsto K$ be 2-to-1

[Levy \vdash] countable discrete subsets of K have closures homeomorphic to $\beta \mathbb{N}$. Hence K has weight c.

1. is K homeomorphic to \mathbb{N}^{*} ?
2. is f locally 1 -to-1, i.e. $\mathbb{N}^{*} \oplus \mathbb{N}^{*} \mapsto \mathbb{N}^{*}$

3 . is f somewhere 1-to-1 (not irreducible)
4. is K non-separable, non-ccc?
5. are countable sets C^{*}-embedded?

Levy's questions: Let $f: \mathbb{N}^{*} \mapsto K$ be 2-to-1

[Levy \vdash] countable discrete subsets of K have closures homeomorphic to $\beta \mathbb{N}$. Hence K has weight \mathfrak{c}.

1. is K homeomorphic to \mathbb{N}^{*} ?
2. is f locally 1 -to- 1 , i.e. $\mathbb{N}^{*} \oplus \mathbb{N}^{*} \mapsto \mathbb{N}^{*}$
3. is f somewhere 1 -to-1 (not irreducible)
4. is K non-separable, non-ccc?
5. are countable sets C^{*}-embedded?

Item 3 is our starting point for investigation.

Could f be irreducible?

For each $a \subset \mathbb{N}$, $f\left[a^{*}\right] \cap f\left[(\mathbb{N} \backslash a)^{*}\right] \subset K$ is useful to consider

Could f be irreducible?

For each $a \subset \mathbb{N}$, $f\left[a^{*}\right] \cap f\left[(\mathbb{N} \backslash a)^{*}\right] \subset K$ is useful to consider pull this back to \mathbb{N}^{*} :

Define $J_{a}=a^{*} \cap f^{-1}\left(f\left[(\mathbb{N} \backslash a)^{*}\right]\right.$.
J_{a} is homeomorphic to $J_{\mathbb{N} \backslash a}\left(\right.$ via $\left.f^{-1} \circ f\right)$; and both to $f\left[a^{*}\right] \cap f\left[(\mathbb{N} \backslash a)^{*}\right] \subset K$.

Could f be irreducible?

For each $a \subset \mathbb{N}$,
$f\left[a^{*}\right] \cap f\left[(\mathbb{N} \backslash a)^{*}\right] \subset K$ is useful to consider
pull this back to \mathbb{N}^{*} :
Define $J_{a}=a^{*} \cap f^{-1}\left(f\left[(\mathbb{N} \backslash a)^{*}\right]\right.$.
J_{a} is homeomorphic to $J_{\mathbb{N} \backslash a}\left(\right.$ via $\left.f^{-1} \circ f\right)$; and both to $f\left[a^{*}\right] \cap f\left[(\mathbb{N} \backslash a)^{*}\right] \subset K$.

If f is irreducible, each are nowhere dense.
then $\left\{J_{a}: a \in \mathcal{P}(\mathbb{N})\right\}$ is a covering of \mathbb{N}^{*} by nwd sets, $n\left(\mathbb{N}^{*}\right) \leq \mathfrak{c}$

Could f be irreducible?

For each $a \subset \mathbb{N}$,
$f\left[a^{*}\right] \cap f\left[(\mathbb{N} \backslash a)^{*}\right] \subset K$ is useful to consider
pull this back to \mathbb{N}^{*} :
Define $J_{a}=a^{*} \cap f^{-1}\left(f\left[(\mathbb{N} \backslash a)^{*}\right]\right.$.
J_{a} is homeomorphic to $J_{\mathbb{N} \backslash a}\left(\right.$ via $\left.f^{-1} \circ f\right)$; and both to $f\left[a^{*}\right] \cap f\left[(\mathbb{N} \backslash a)^{*}\right] \subset K$.

If f is irreducible, each are nowhere dense.
then $\left\{J_{a}: a \in \mathcal{P}(\mathbb{N})\right\}$ is a covering of \mathbb{N}^{*} by nwd sets, $n\left(\mathbb{N}^{*}\right) \leq \mathfrak{c}$
this connects to studied questions about covering \mathbb{N}^{*} by nwd sets

For example

For example
Fact: if vD spaces have "lots" of far points, then J_{A} is a discrete weak P-set of Z

For example
Fact: if vD spaces have "lots" of far points, then J_{A} is a discrete weak P -set of Z

Question 3 Can \mathbb{N}^{*} be covered by (discrete) [weak] P-sets?

For example
Fact: if vD spaces have "lots" of far points, then J_{A} is a discrete weak P -set of Z

Question 3 Can \mathbb{N}^{*} be covered by (discrete) [weak] P-sets? for weak P-sets, I only know "NO" if CH

For example
Fact: if vD spaces have "lots" of far points, then J_{A} is a discrete weak P-set of Z

Question 3 Can \mathbb{N}^{*} be covered by (discrete) [weak] P-sets? for weak P-sets, I only know "NO" if CH

Question 4 Con(MA + no P-set cover) but PFA or MA \vdash ?

Back to 2-to-1: the CH story is very elegant

There is a dense open $U_{0} \subset K$ such that f is locally 1-to-1 on $f^{-1}\left[U_{0}\right]$ (stronger than somewhere 1-to-1)

Back to 2-to-1: the CH story is very elegant

There is a dense open $U_{0} \subset K$ such that f is locally 1 -to- 1 on $f^{-1}\left[U_{0}\right]$ (stronger than somewhere 1-to-1)
e.g. put $a \in \mathcal{I}_{f}$ if f is 2-to-1 and locally 1-to-1 on $a^{*} ; a=b \cup c$, $f\left[b^{*}\right]=f\left[c^{*}\right]=K \backslash f\left[(\mathbb{N} \backslash a)^{*}\right]$

Back to 2-to-1: the CH story is very elegant

There is a dense open $U_{0} \subset K$ such that f is locally 1 -to- 1 on $f^{-1}\left[U_{0}\right]$ (stronger than somewhere 1 -to- 1)
e.g. put $a \in \mathcal{I}_{f}$ if f is 2-to-1 and locally 1-to-1 on $a^{*} ; a=b \cup c$, $f\left[b^{*}\right]=f\left[c^{*}\right]=K \backslash f\left[(\mathbb{N} \backslash a)^{*}\right]$
we would say trivially 2-to-1 on a^{*}

Back to 2-to-1: the CH story is very elegant

There is a dense open $U_{0} \subset K$ such that f is locally 1 -to- 1 on $f^{-1}\left[U_{0}\right]$ (stronger than somewhere 1 -to- 1)
e.g. put $a \in \mathcal{I}_{f}$ if f is 2-to-1 and locally 1-to-1 on $a^{*} ; a=b \cup c$, $f\left[b^{*}\right]=f\left[c^{*}\right]=K \backslash f\left[(\mathbb{N} \backslash a)^{*}\right]$
we would say trivially 2-to-1 on a^{*}
Set $K_{1}=K \backslash U_{0}$ and $X_{1}=f^{-1}\left[K_{1}\right]$, hence $f: X_{1} \mapsto K_{1}$ is 2-to-1 (and repeat)

Back to 2-to-1: the CH story is very elegant

There is a dense open $U_{0} \subset K$ such that f is locally 1 -to- 1 on $f^{-1}\left[U_{0}\right]$ (stronger than somewhere 1-to-1)
e.g. put $a \in \mathcal{I}_{f}$ if f is 2-to-1 and locally 1-to-1 on $a^{*} ; a=b \cup c$, $f\left[b^{*}\right]=f\left[c^{*}\right]=K \backslash f\left[(\mathbb{N} \backslash a)^{*}\right]$
we would say trivially 2-to-1 on a^{*}
Set $K_{1}=K \backslash U_{0}$ and $X_{1}=f^{-1}\left[K_{1}\right]$, hence $f: X_{1} \mapsto K_{1}$ is 2-to-1 (and repeat)
think of \mathbb{N}^{*} as $A_{0} \oplus X_{1} B_{0}$, each $A_{0} \backslash X_{1}$ and $B_{0} \backslash X_{1}$ mapping 1-to-1 onto U_{0} (hence essentially to each other)

Back to 2-to-1: the CH story is very elegant

There is a dense open $U_{0} \subset K$ such that f is locally 1 -to- 1 on $f^{-1}\left[U_{0}\right]$ (stronger than somewhere 1-to-1)
e.g. put $a \in \mathcal{I}_{f}$ if f is 2-to-1 and locally 1-to-1 on $a^{*} ; a=b \cup c$, $f\left[b^{*}\right]=f\left[c^{*}\right]=K \backslash f\left[(\mathbb{N} \backslash a)^{*}\right]$
we would say trivially 2-to-1 on a^{*}
Set $K_{1}=K \backslash U_{0}$ and $X_{1}=f^{-1}\left[K_{1}\right]$, hence $f: X_{1} \mapsto K_{1}$ is 2-to-1 (and repeat)
think of \mathbb{N}^{*} as $A_{0} \oplus X_{1} B_{0}$, each $A_{0} \backslash X_{1}$ and $B_{0} \backslash X_{1}$ mapping 1-to-1 onto U_{0} (hence essentially to each other)
need a picture

Back to 2-to-1: the CH story is very elegant

There is a dense open $U_{0} \subset K$ such that f is locally 1 -to- 1 on $f^{-1}\left[U_{0}\right]$ (stronger than somewhere 1-to-1)
e.g. put $a \in \mathcal{I}_{f}$ if f is 2-to-1 and locally 1-to-1 on $a^{*} ; a=b \cup c$, $f\left[b^{*}\right]=f\left[c^{*}\right]=K \backslash f\left[(\mathbb{N} \backslash a)^{*}\right]$
we would say trivially 2-to-1 on a^{*}
Set $K_{1}=K \backslash U_{0}$ and $X_{1}=f^{-1}\left[K_{1}\right]$, hence $f: X_{1} \mapsto K_{1}$ is 2-to-1 (and repeat)
think of \mathbb{N}^{*} as $A_{0} \oplus X_{1} B_{0}$, each $A_{0} \backslash X_{1}$ and $B_{0} \backslash X_{1}$ mapping 1-to-1 onto U_{0} (hence essentially to each other)
need a picture
similarly there is $U_{1} \subset K_{1}$ and $A_{1} \oplus x_{2} B_{1}$ with $X_{2}=f^{-1}\left[K_{2}=\left(K_{1} \backslash U_{1}\right)\right]$

X_{1}
$=$
$A_{1} \cup B_{1}$

pick clopen set $W \subset \mathbb{N}^{*}$ such that $W \cap X_{1}=A_{1}$
$K \backslash f[W]$ can be made clopen; etc, etc, K is Parovicenko can be shown

$\quad X_{1}$
$=$
$A_{1} \cup B_{1}$
if, e.g. $K_{2}=\emptyset$

$$
\text { i.e. } U_{1}=K_{1}
$$

pick clopen set $W \subset \mathbb{N}^{*}$ such that $W \cap X_{1}=A_{1}$
$K \backslash f[W]$ can be made clopen; etc, etc, K is Parovicenko can be shown
$\vdash K_{n}$ IS empty for some $n \in \omega$

pick clopen set $W \subset \mathbb{N}^{*}$ such
$K \backslash f[W]$ can be made clopen; etc, etc, K is Parovicenko
can all this happen?
that $W \cap X_{1}=A_{1}$ can be shown

$$
\begin{aligned}
& \text { if, e.g. } K_{2}=\emptyset \\
& \text { i.e. } U_{1}=K_{1}
\end{aligned}
$$

can be snown

can all this happen?
$\vdash K_{n}$ IS empty for some $n \in \omega$

THUS CH implies $K \approx \mathbb{N}^{*}$

tie-points and propeller points

Say that $x \in \mathbb{N}^{*}$ is a tie-point if there are closed sets A, B covering \mathbb{N}^{*} and $\{x\}=A^{\prime} \cap B^{\prime} ;$ denote this as $\mathbb{N}^{*}=A \oplus_{x} B$.

tie-points and propeller points

Say that $x \in \mathbb{N}^{*}$ is a tie-point if there are closed sets A, B covering \mathbb{N}^{*} and $\{x\}=A^{\prime} \cap B^{\prime}$; denote this as $\mathbb{N}^{*}=A \oplus_{x} B$.

We could further measure $\tau(x) \geq k$ by increasing the number of wings

tie-points and propeller points

Say that $x \in \mathbb{N}^{*}$ is a tie-point if there are closed sets A, B covering \mathbb{N}^{*} and $\{x\}=A^{\prime} \cap B^{\prime} ;$ denote this as $\mathbb{N}^{*}=A \oplus_{x} B$.

We could further measure $\tau(x) \geq k$ by increasing the number of wings
say that x is a propeller point (?symmetric tie-point?) if $\mathbb{N}^{*}=A \oplus_{x} B$ and there is an autohomeomorphism h such that $\{x\}=\operatorname{fix}(h)$ and $h[A]=B$ (i.e. h spins the propeller)

tie-points and propeller points

Say that $x \in \mathbb{N}^{*}$ is a tie-point if there are closed sets A, B covering \mathbb{N}^{*} and $\{x\}=A^{\prime} \cap B^{\prime}$; denote this as $\mathbb{N}^{*}=A \oplus_{x} B$.

We could further measure $\tau(x) \geq k$ by increasing the number of wings
say that x is a propeller point (?symmetric tie-point?) if $\mathbb{N}^{*}=A \oplus_{x} B$ and there is an autohomeomorphism h such that $\{x\}=$ fix (h) and $h[A]=B$ (i.e. h spins the propeller)
if x_{1}, x_{2} are propeller points, then there is a 2-to-1 f on \mathbb{N}^{*} such that $K \approx A_{1} \oplus_{x_{2}}^{x_{1}} B_{2}$, where

tie-points and propeller points

Say that $x \in \mathbb{N}^{*}$ is a tie-point if there are closed sets A, B covering \mathbb{N}^{*} and $\{x\}=A^{\prime} \cap B^{\prime}$; denote this as $\mathbb{N}^{*}=A \oplus_{x} B$.

We could further measure $\tau(x) \geq k$ by increasing the number of wings
say that x is a propeller point (?symmetric tie-point?) if $\mathbb{N}^{*}=A \oplus_{x} B$ and there is an autohomeomorphism h such that $\{x\}=$ fix (h) and $h[A]=B$ (i.e. h spins the propeller)
if x_{1}, x_{2} are propeller points, then there is a 2-to-1 f on \mathbb{N}^{*} such that $K \approx A_{1} \oplus_{x_{2}}^{x_{1}} B_{2}$, where
$\mathbb{N}^{*}=A_{1} \oplus_{x_{1}} B_{1}$ and $\mathbb{N}^{*}=A_{2} \oplus_{x_{2}} B_{2}$ witness the propellers

tie-points and propeller points

Say that $x \in \mathbb{N}^{*}$ is a tie-point if there are closed sets A, B covering \mathbb{N}^{*} and $\{x\}=A^{\prime} \cap B^{\prime}$; denote this as $\mathbb{N}^{*}=A \oplus_{x} B$.

We could further measure $\tau(x) \geq k$ by increasing the number of wings
say that x is a propeller point (?symmetric tie-point?) if $\mathbb{N}^{*}=A \oplus_{x} B$ and there is an autohomeomorphism h such that $\{x\}=$ fix (h) and $h[A]=B$ (i.e. h spins the propeller)
if x_{1}, x_{2} are propeller points, then there is a 2-to-1 f on \mathbb{N}^{*} such that $K \approx A_{1} \oplus_{x_{2}}^{x_{1}} B_{2}$, where
$\mathbb{N}^{*}=A_{1} \oplus_{x_{1}} B_{1}$ and $\mathbb{N}^{*}=A_{2} \oplus_{x_{2}} B_{2}$ witness the propellers
I do not know if it's the same to ask for x such that there is an involution f on \mathbb{N}^{*} with $\{x\}=\operatorname{fix}(f)$; but I think it is interesting to investigate possible "values" for fix (f)

propellers under CH and many copies of \mathbb{N}^{*}

Under CH , every point x of \mathbb{N}^{*} is a tie-point such that $\mathbb{N}^{*}=A \oplus_{x} B$ with, in addition, each of $A \approx B \approx \mathbb{N}^{*}$ (regular closed copies of \mathbb{N}^{*});

propellers under CH and many copies of \mathbb{N}^{*}

Under CH , every point x of \mathbb{N}^{*} is a tie-point such that $\mathbb{N}^{*}=A \oplus_{x} B$ with, in addition, each of $A \approx B \approx \mathbb{N}^{*}$ (regular closed copies of \mathbb{N}^{*}); x is a propeller point iff x is a P-point.

propellers under CH and many copies of \mathbb{N}^{*}

Under CH , every point x of \mathbb{N}^{*} is a tie-point such that $\mathbb{N}^{*}=A \oplus_{x} B$ with, in addition, each of $A \approx B \approx \mathbb{N}^{*}$ (regular closed copies of \mathbb{N}^{*}); x is a propeller point iff x is a P-point.
for any compact 0 -dim'I space X of weight $\leq \mathfrak{c}$, (e.g. $X=\omega+1$), $(\omega \times X)^{*}$ is homeomorphic to \mathbb{N}^{*}

propellers under CH and many copies of \mathbb{N}^{*}

Under CH , every point x of \mathbb{N}^{*} is a tie-point such that $\mathbb{N}^{*}=A \oplus_{x} B$ with, in addition, each of $A \approx B \approx \mathbb{N}^{*}$ (regular closed copies of \mathbb{N}^{*}); x is a propeller point iff x is a P-point.
for any compact 0 -dim'I space X of weight $\leq \mathfrak{c}$, (e.g. $X=\omega+1$), $(\omega \times X)^{*}$ is homeomorphic to \mathbb{N}^{*}
using $E=\{2 n: n \in \omega\}$ and $O=\omega \backslash E$,

propellers under CH and many copies of \mathbb{N}^{*}

Under CH , every point x of \mathbb{N}^{*} is a tie-point such that $\mathbb{N}^{*}=A \oplus_{x} B$ with, in addition, each of $A \approx B \approx \mathbb{N}^{*}$ (regular closed copies of \mathbb{N}^{*}); x is a propeller point iff x is a P-point.
for any compact 0 -dim'I space X of weight $\leq \mathfrak{c}$, (e.g. $X=\omega+1$), $(\omega \times X)^{*}$ is homeomorphic to \mathbb{N}^{*}
using $E=\{2 n: n \in \omega\}$ and $O=\omega \backslash E$, we see that setting
$A=(\omega \times(E \cup\{\omega\}))^{*}$ and $B=(\omega \times(O \cup\{\omega\}))^{*}$

propellers under CH and many copies of \mathbb{N}^{*}

Under CH , every point x of \mathbb{N}^{*} is a tie-point such that $\mathbb{N}^{*}=A \oplus_{x} B$ with, in addition, each of $A \approx B \approx \mathbb{N}^{*}$ (regular closed copies of \mathbb{N}^{*}); x is a propeller point iff x is a P-point.
for any compact 0 -dim'I space X of weight $\leq \mathfrak{c}$, (e.g. $X=\omega+1$), $(\omega \times X)^{*}$ is homeomorphic to \mathbb{N}^{*}
using $E=\{2 n: n \in \omega\}$ and $O=\omega \backslash E$, we see that setting
$A=(\omega \times(E \cup\{\omega\}))^{*}$ and $B=(\omega \times(O \cup\{\omega\}))^{*}$
show that $\mathbb{N}^{*} \approx(\omega \times\{\omega\})^{*} \approx A \oplus_{\mathbb{N}^{*}} B$

propellers under CH and many copies of \mathbb{N}^{*}

Under CH , every point x of \mathbb{N}^{*} is a tie-point such that $\mathbb{N}^{*}=A \oplus_{x} B$ with, in addition, each of $A \approx B \approx \mathbb{N}^{*}$ (regular closed copies of \mathbb{N}^{*}); x is a propeller point iff x is a P-point.
for any compact 0 -dim'I space X of weight $\leq \mathfrak{c}$, (e.g. $X=\omega+1$), $(\omega \times X)^{*}$ is homeomorphic to \mathbb{N}^{*}
using $E=\{2 n: n \in \omega\}$ and $O=\omega \backslash E$, we see that setting
$A=(\omega \times(E \cup\{\omega\}))^{*}$ and $B=(\omega \times(O \cup\{\omega\}))^{*}$
show that $\mathbb{N}^{*} \approx(\omega \times\{\omega\})^{*} \approx A \oplus_{\mathbb{N}^{*}} B$
with \mathbb{N}^{*} as a propeller set, hence $K_{2} \neq \emptyset$ (and iterate)

propellers under CH and many copies of \mathbb{N}^{*}

Under CH , every point x of \mathbb{N}^{*} is a tie-point such that $\mathbb{N}^{*}=A \oplus_{x} B$ with, in addition, each of $A \approx B \approx \mathbb{N}^{*}$ (regular closed copies of \mathbb{N}^{*}); x is a propeller point iff x is a P-point.
for any compact 0 -dim'I space X of weight $\leq \mathfrak{c}$, (e.g. $X=\omega+1$), $(\omega \times X)^{*}$ is homeomorphic to \mathbb{N}^{*}
using $E=\{2 n: n \in \omega\}$ and $O=\omega \backslash E$, we see that setting
$A=(\omega \times(E \cup\{\omega\}))^{*}$ and $B=(\omega \times(O \cup\{\omega\}))^{*}$
show that $\mathbb{N}^{*} \approx(\omega \times\{\omega\})^{*} \approx A \oplus_{\mathbb{N}^{*}} B$
with \mathbb{N}^{*} as a propeller set, hence $K_{2} \neq \emptyset$ (and iterate)
also for any ultrafilter $\mathfrak{U} \in \mathbb{N}^{*}$, considering $(\omega \times \omega+1)_{\mathfrak{U}}^{*}$ (the \mathfrak{U}-limits in the growth) exemplifies there is a propeller point

propellers under CH and many copies of \mathbb{N}^{*}

Under CH , every point x of \mathbb{N}^{*} is a tie-point such that $\mathbb{N}^{*}=A \oplus_{x} B$ with, in addition, each of $A \approx B \approx \mathbb{N}^{*}$ (regular closed copies of \mathbb{N}^{*}); x is a propeller point iff x is a P-point.
for any compact 0 -dim'l space X of weight \leq r, (e.g. $X=\omega+1$), $(\omega \times X)^{*}$ is homeomorphic to \mathbb{N}^{*}
using $E=\{2 n: n \in \omega\}$ and $O=\omega \backslash E$, we see that setting
$A=(\omega \times(E \cup\{\omega\}))^{*}$ and $B=(\omega \times(O \cup\{\omega\}))^{*}$
show that $\mathbb{N}^{*} \approx(\omega \times\{\omega\})^{*} \approx A \oplus_{\mathbb{N}^{*}} B$
with \mathbb{N}^{*} as a propeller set, hence $K_{2} \neq \emptyset$ (and iterate)
also for any ultrafilter $\mathfrak{U} \in \mathbb{N}^{*}$, considering $(\omega \times \omega+1)_{\mathfrak{u}}^{*}$ (the \mathfrak{U}-limits in the growth) exemplifies there is a propeller point
my best guess for a $K \not \approx \mathbb{N}^{*}$ is to have propeller points $\mathbb{N}^{*}=A_{i} \oplus_{x_{i}} B_{i}$ so that $A_{1} \not \approx \mathbb{N}^{*}$ and/or $A_{1} \oplus_{x_{2}}^{x_{1}} B_{2} \not \approx \mathbb{N}^{*}$

some PFA tricks; tie-points; and regular closed sets

Can there be tie-points? and if there are, can $A \approx \mathbb{N}^{*}$?

some PFA tricks; tie-points; and regular closed sets

Can there be tie-points? and if there are, can $A \approx \mathbb{N}^{*}$?
Major open problem: Question 5 If f embeds \mathbb{N}^{*} into \mathbb{N}^{*}, is there a lifting from $\beta \mathbb{N}$ to $\beta \mathbb{N}$?

some PFA tricks; tie-points; and regular closed sets

Can there be tie-points? and if there are, can $A \approx \mathbb{N}^{*}$?
Major open problem: Question 5 If f embeds \mathbb{N}^{*} into \mathbb{N}^{*}, is there a lifting from $\beta \mathbb{N}$ to $\beta \mathbb{N}$?
an ideal $\mathcal{I} \subset \mathcal{P}(\mathbb{N})$ is ccc over fin if there is no uncountable almost disjoint family in \mathcal{I}^{+};

some PFA tricks; tie-points; and regular closed sets

Can there be tie-points? and if there are, can $A \approx \mathbb{N}^{*}$?
Major open problem: Question 5 If f embeds \mathbb{N}^{*} into \mathbb{N}^{*}, is there a lifting from $\beta \mathbb{N}$ to $\beta \mathbb{N}$?
an ideal $\mathcal{I} \subset \mathcal{P}(\mathbb{N})$ is ccc over fin if there is no uncountable almost disjoint family in \mathcal{I}^{+};
similarly a closed set $K \subset \mathbb{N}^{*}$ can be said to be ccc over fin if there is no uncountable family of disjoint clopen subsets of \mathbb{N}^{*} each hitting K (this is more general than requiring that K is contained in a ccc space)
the CH , Cohen + OCA tricks

the CH, Cohen + OCA tricks

Let \mathcal{I}, \mathcal{J} etc. be families from $\mathcal{P}(\mathbb{N})$

the CH , Cohen + OCA tricks

Let \mathcal{I}, \mathcal{J} etc. be families from $\mathcal{P}(\mathbb{N})$
CH trick ${ }^{<\omega_{1}} \omega_{2} \Vdash$ if every \aleph_{1}-sized subcollection has a nice extension, then so must \mathcal{I}, \mathcal{J} (in each "proper" extension)

the CH, Cohen + OCA tricks

Let \mathcal{I}, \mathcal{J} etc. be families from $\mathcal{P}(\mathbb{N})$
CH trick ${ }^{<\omega_{1}} \omega_{2} \Vdash$ if every \aleph_{1}-sized subcollection has a nice extension, then so must \mathcal{I}, \mathcal{J} (in each "proper" extension)
[Farah?] $<\omega 2 \Vdash$ usually no harm done but might be useful

the CH , Cohen + OCA tricks

Let \mathcal{I}, \mathcal{J} etc. be families from $\mathcal{P}(\mathbb{N})$
CH trick ${ }^{<\omega_{1}} \omega_{2} \Vdash$ if every \aleph_{1}-sized subcollection has a nice extension, then so must \mathcal{I}, \mathcal{J} (in each "proper" extension)
[Farah?] $<\omega 2 \Vdash$ usually no harm done but might be useful
OCA trick: If $\mathbb{X} \subset \mathcal{P}(\mathbb{N})$ and $R \subset[\mathcal{P}(\mathbb{N})]^{2}$ is open [often simply $x \cap y \neq \emptyset]$, and if $\neg \exists \mathbb{X}=\bigcup_{n} \mathbb{X}_{n}$ such that $\bigcup_{n}\left[\mathbb{X}_{n}\right]^{2} \cap R$ is empty,

the CH , Cohen + OCA tricks

Let \mathcal{I}, \mathcal{J} etc. be families from $\mathcal{P}(\mathbb{N})$
CH trick ${ }^{<\omega_{1}} \omega_{2} \Vdash$ if every \aleph_{1}-sized subcollection has a nice extension, then so must \mathcal{I}, \mathcal{J} (in each "proper" extension)
[Farah?] $<\omega 2 \Vdash$ usually no harm done but might be useful OCA trick: If $\mathbb{X} \subset \mathcal{P}(\mathbb{N})$ and $R \subset[\mathcal{P}(\mathbb{N})]^{2}$ is open [often simply $x \cap y \neq \emptyset]$, and if $\neg \exists \mathbb{X}=\bigcup_{n} \mathbb{X}_{n}$ such that $\bigcup_{n}\left[\mathbb{X}_{n}\right]^{2} \cap R$ is empty, then there is a proper poset \mathbb{Q}_{R} forcing an R-homogeneous $\left\{x_{\alpha}: \alpha \in \omega_{1}\right\} \subset \mathbb{X}$.

the CH , Cohen + OCA tricks

Let \mathcal{I}, \mathcal{J} etc. be families from $\mathcal{P}(\mathbb{N})$
CH trick ${ }^{<\omega_{1}} \omega_{2} \Vdash$ if every \aleph_{1}-sized subcollection has a nice extension, then so must \mathcal{I}, \mathcal{J} (in each "proper" extension)
[Farah?] ${ }^{<\omega} 2 \|$ usually no harm done but might be useful OCA trick: If $\mathbb{X} \subset \mathcal{P}(\mathbb{N})$ and $R \subset[\mathcal{P}(\mathbb{N})]^{2}$ is open [often simply $x \cap y \neq \emptyset]$, and if $\neg \exists \mathbb{X}=\bigcup_{n} \mathbb{X}_{n}$ such that $\bigcup_{n}\left[\mathbb{X}_{n}\right]^{2} \cap R$ is empty, then there is a proper poset \mathbb{Q}_{R} forcing an R-homogeneous $\left\{x_{\alpha}: \alpha \in \omega_{1}\right\} \subset \mathbb{X}$. so, by PFA, such a sequence actually exists

the CH , Cohen + OCA tricks

Let \mathcal{I}, \mathcal{J} etc. be families from $\mathcal{P}(\mathbb{N})$
CH trick ${ }^{<\omega_{1}} \omega_{2} \Vdash$ if every \aleph_{1}-sized subcollection has a nice extension, then so must \mathcal{I}, \mathcal{J} (in each "proper" extension)
[Farah?] ${ }^{<\omega} 2 \Vdash$ usually no harm done but might be useful
OCA trick: If $\mathbb{X} \subset \mathcal{P}(\mathbb{N})$ and $R \subset[\mathcal{P}(\mathbb{N})]^{2}$ is open [often simply $x \cap y \neq \emptyset]$, and if $\neg \exists \mathbb{X}=\bigcup_{n} \mathbb{X}_{n}$ such that $\bigcup_{n}\left[\mathbb{X}_{n}\right]^{2} \cap R$ is empty, then there is a proper poset \mathbb{Q}_{R} forcing an R-homogeneous $\left\{x_{\alpha}: \alpha \in \omega_{1}\right\} \subset \mathbb{X}$. so, by PFA, such a sequence actually exists
e.g. if $x_{\alpha}=\left(I_{\alpha}, J_{\alpha}\right) \in \mathcal{I} \times \mathcal{J}$ with $I_{\alpha} \cap J_{\alpha}=\emptyset$, and for $\alpha \neq \beta$, $\left(I_{\alpha} \cap J_{\beta}\right) \cup\left(J_{\alpha} \cap I_{\beta}\right) \neq \emptyset$,

the CH , Cohen + OCA tricks

Let \mathcal{I}, \mathcal{J} etc. be families from $\mathcal{P}(\mathbb{N})$
CH trick ${ }^{<\omega_{1}} \omega_{2} \|$ if every \aleph_{1}-sized subcollection has a nice extension, then so must \mathcal{I}, \mathcal{J} (in each "proper" extension)
[Farah?] ${ }^{<\omega} 2 \Vdash$ usually no harm done but might be useful
OCA trick: If $\mathbb{X} \subset \mathcal{P}(\mathbb{N})$ and $R \subset[\mathcal{P}(\mathbb{N})]^{2}$ is open [often simply $x \cap y \neq \emptyset]$, and if $\neg \exists \mathbb{X}=\bigcup_{n} \mathbb{X}_{n}$ such that $\bigcup_{n}\left[\mathbb{X}_{n}\right]^{2} \cap R$ is empty, then there is a proper poset \mathbb{Q}_{R} forcing an R-homogeneous $\left\{x_{\alpha}: \alpha \in \omega_{1}\right\} \subset \mathbb{X}$. so, by PFA, such a sequence actually exists
e.g. if $X_{\alpha}=\left(I_{\alpha}, J_{\alpha}\right) \in \mathcal{I} \times \mathcal{J}$ with $I_{\alpha} \cap J_{\alpha}=\emptyset$, and for $\alpha \neq \beta$, $\left(I_{\alpha} \cap J_{\beta}\right) \cup\left(J_{\alpha} \cap I_{\beta}\right) \neq \emptyset$, then $\bigcup_{\alpha}{ }_{\alpha}^{*} \cap \bigcup_{\alpha} J_{\alpha}^{*} \neq \emptyset$

gaps and such

OCA trick: If $\mathbb{X} \subset \mathcal{P}(\mathbb{N})$ and $R \subset[\mathcal{P}(\mathbb{N})]^{2}$ is open [often simply $x \cap y \neq \emptyset]$, and if $\neg \exists \mathbb{X}=\bigcup_{n} \mathbb{X}_{n}$ such that $\bigcup_{n}\left[\mathbb{X}_{n}\right]^{2} \cap R$ is empty, then there is a proper poset \mathbb{Q}_{R} forcing an R-homogeneous $\left\{x_{\alpha}: \alpha \in \omega_{1}\right\} \subset \mathbb{X}$. so, by PFA, such a sequence actually exists

gaps and such

OCA trick: If $\mathbb{X} \subset \mathcal{P}(\mathbb{N})$ and $R \subset[\mathcal{P}(\mathbb{N})]^{2}$ is open [often simply $x \cap y \neq \emptyset]$, and if $\neg \exists \mathbb{X}=\bigcup_{n} \mathbb{X}_{n}$ such that $\bigcup_{n}\left[\mathbb{X}_{n}\right]^{2} \cap R$ is empty, then there is a proper poset \mathbb{Q}_{R} forcing an R-homogeneous $\left\{x_{\alpha}: \alpha \in \omega_{1}\right\} \subset \mathbb{X}$. so, by PFA, such a sequence actually exists
e.g. if $x_{\alpha}=\left(I_{\alpha}, J_{\alpha}\right) \in \mathcal{I} \times \mathcal{J}$ with $I_{\alpha} \cap J_{\alpha}=\emptyset$, and for $\alpha \neq \beta$, $\left(I_{\alpha} \cap J_{\beta}\right) \cup\left(J_{\alpha} \cap I_{\beta}\right) \neq \emptyset$, then $\overline{\bigcup_{\alpha} I_{\alpha}^{*}} \cap \overline{\bigcup_{\alpha} J_{\alpha}^{*}} \neq \emptyset$

gaps and such

OCA trick: If $\mathbb{X} \subset \mathcal{P}(\mathbb{N})$ and $R \subset[\mathcal{P}(\mathbb{N})]^{2}$ is open [often simply $x \cap y \neq \emptyset]$, and if $\neg \exists \mathbb{X}=\bigcup_{n} \mathbb{X}_{n}$ such that $\bigcup_{n}\left[\mathbb{X}_{n}\right]^{2} \cap R$ is empty, then there is a proper poset \mathbb{Q}_{R} forcing an R-homogeneous $\left\{x_{\alpha}: \alpha \in \omega_{1}\right\} \subset \mathbb{X}$. so, by PFA, such a sequence actually exists
e.g. if $X_{\alpha}=\left(I_{\alpha}, J_{\alpha}\right) \in \mathcal{I} \times \mathcal{J}$ with $I_{\alpha} \cap J_{\alpha}=\emptyset$, and for $\alpha \neq \beta$, $\left(I_{\alpha} \cap J_{\beta}\right) \cup\left(J_{\alpha} \cap I_{\beta}\right) \neq \emptyset$, then $\overline{\bigcup_{\alpha}{ }_{\alpha}^{*}} \cap \overline{\bigcup_{\alpha} Ј_{\alpha}^{J}} \neq \emptyset$

CH trick plus OCA trick implies no (ω_{2}, κ)-gaps for $\kappa \notin\{1, \omega\}$

gaps and such

OCA trick: If $\mathbb{X} \subset \mathcal{P}(\mathbb{N})$ and $R \subset[\mathcal{P}(\mathbb{N})]^{2}$ is open [often simply $x \cap y \neq \emptyset]$, and if $\neg \exists \mathbb{X}=\bigcup_{n} \mathbb{X}_{n}$ such that $\bigcup_{n}\left[\mathbb{X}_{n}\right]^{2} \cap R$ is empty, then there is a proper poset \mathbb{Q}_{R} forcing an R-homogeneous $\left\{x_{\alpha}: \alpha \in \omega_{1}\right\} \subset \mathbb{X}$. so, by PFA, such a sequence actually exists
e.g. if $X_{\alpha}=\left(I_{\alpha}, J_{\alpha}\right) \in \mathcal{I} \times \mathcal{J}$ with $I_{\alpha} \cap J_{\alpha}=\emptyset$, and for $\alpha \neq \beta$, $\left(I_{\alpha} \cap J_{\beta}\right) \cup\left(J_{\alpha} \cap I_{\beta}\right) \neq \emptyset$, then $\overline{\bigcup_{\alpha}{ }_{\alpha}^{*}} \cap \overline{\bigcup_{\alpha} Ј_{\alpha}^{*}} \neq \emptyset$

CH trick plus OCA trick implies no (ω_{2}, κ)-gaps for $\kappa \notin\{1, \omega\}$
or if each $x_{\alpha}=h_{\alpha}: \mathbb{N} \mapsto \mathbb{N}$ is a partial function and $h_{\alpha} \cup h_{\beta}$ is not a function for $\alpha \neq \beta$, then there is no common mod finite extension

gaps and such

OCA trick: If $\mathbb{X} \subset \mathcal{P}(\mathbb{N})$ and $R \subset[\mathcal{P}(\mathbb{N})]^{2}$ is open [often simply $x \cap y \neq \emptyset]$, and if $\neg \exists \mathbb{X}=\bigcup_{n} \mathbb{X}_{n}$ such that $\bigcup_{n}\left[\mathbb{X}_{n}\right]^{2} \cap R$ is empty, then there is a proper poset \mathbb{Q}_{R} forcing an R-homogeneous $\left\{x_{\alpha}: \alpha \in \omega_{1}\right\} \subset \mathbb{X}$. so, by PFA, such a sequence actually exists
e.g. if $x_{\alpha}=\left(I_{\alpha}, J_{\alpha}\right) \in \mathcal{I} \times \mathcal{J}$ with $I_{\alpha} \cap \mathcal{J}_{\alpha}=\emptyset$, and for $\alpha \neq \beta$, $\left(I_{\alpha} \cap J_{\beta}\right) \cup\left(J_{\alpha} \cap I_{\beta}\right) \neq \emptyset$, then $\overline{\bigcup_{\alpha}{ }_{\alpha}^{* *}} \cap \overline{\bigcup_{\alpha} ل_{\alpha}^{*}} \neq \emptyset$

CH trick plus OCA trick implies no (ω_{2}, κ)-gaps for $\kappa \notin\{1, \omega\}$
or if each $x_{\alpha}=h_{\alpha}: \mathbb{N} \mapsto \mathbb{N}$ is a partial function and $h_{\alpha} \cup h_{\beta}$ is not a function for $\alpha \neq \beta$, then there is no common mod finite extension
so if \mathcal{H} is a coherent family of functions and $\{\operatorname{dom}(h): h \in \mathcal{H}\}$ is a $\mathrm{P}_{\omega_{2}}$-ideal, then THERE IS a common mod finite extension

forcing a gap from Shelah-Steprans

Start with PFA, use the CH trick to pass to the forcing extension by ${ }^{<\omega_{1}} \omega_{2}$. This leaves $\mathcal{P}(\mathbb{N})$ unchanged.

forcing a gap from Shelah-Steprans

Start with PFA, use the CH trick to pass to the forcing extension by ${ }^{\left\langle\omega_{1}\right.} \omega_{2}$. This leaves $\mathcal{P}(\mathbb{N})$ unchanged.
let Q be a ccc poset of cardinality ω_{1} and $\left\{\dot{Y}_{\alpha}: \alpha \in \omega_{1}\right\}$ enumerate all (nice) Q-names of subsets of \mathbb{N}.

forcing a gap from Shelah-Steprans

Start with PFA, use the CH trick to pass to the forcing extension by ${ }^{\left\langle\omega_{1}\right.} \omega_{2}$. This leaves $\mathcal{P}(\mathbb{N})$ unchanged.
let Q be a ccc poset of cardinality ω_{1} and $\left\{\dot{Y}_{\alpha}: \alpha \in \omega_{1}\right\}$ enumerate all (nice) Q-names of subsets of \mathbb{N}.
inductively (or otherwise) choose $\left\{\left(c_{\alpha}, d_{\alpha}\right): \alpha \in \omega_{1}\right\} \subset$ $V \cap \mathcal{P}(\mathbb{N})$, so that, for $\beta<\alpha, \Vdash_{Q} Y_{\beta} \cap\left(c_{\alpha} \cup d_{\alpha}\right) \not \neq^{*} c_{\alpha}$ (if possible: make them \subset^{*} increasing)

forcing a gap from Shelah-Steprans

Start with PFA, use the CH trick to pass to the forcing extension by ${ }^{\left\langle\omega_{1}\right.} \omega_{2}$. This leaves $\mathcal{P}(\mathbb{N})$ unchanged.
let Q be a ccc poset of cardinality ω_{1} and $\left\{\dot{Y}_{\alpha}: \alpha \in \omega_{1}\right\}$ enumerate all (nice) Q-names of subsets of \mathbb{N}.
inductively (or otherwise) choose $\left\{\left(c_{\alpha}, d_{\alpha}\right): \alpha \in \omega_{1}\right\} \subset$ $V \cap \mathcal{P}(\mathbb{N})$, so that, for $\beta<\alpha, \Vdash_{Q} \dot{Y}_{\beta} \cap\left(c_{\alpha} \cup d_{\alpha}\right) \neq{ }^{*} c_{\alpha}$ (if possible: make them \subset^{*} increasing)
then in the extension by $Q,(\alpha, \beta) \in R$ providing $\left(c_{\alpha} \cap d_{\beta}\right) \cup\left(d_{\alpha} \cap c_{\beta}\right) \neq \emptyset$ satisfies that $\left[\mathbb{X}^{\prime}\right]^{2} \cap R$ is not empty for all uncountable $\mathbb{X}^{\prime} \subset \mathbb{X}=\omega_{1}$

forcing a gap from Shelah-Steprans

Start with PFA, use the CH trick to pass to the forcing extension by ${ }^{\left\langle\omega_{1}\right.} \omega_{2}$. This leaves $\mathcal{P}(\mathbb{N})$ unchanged.
let Q be a ccc poset of cardinality ω_{1} and $\left\{\dot{Y}_{\alpha}: \alpha \in \omega_{1}\right\}$ enumerate all (nice) Q-names of subsets of \mathbb{N}.
inductively (or otherwise) choose $\left\{\left(c_{\alpha}, d_{\alpha}\right): \alpha \in \omega_{1}\right\} \subset$ $V \cap \mathcal{P}(\mathbb{N})$, so that, for $\beta<\alpha, \Vdash_{Q} \dot{Y}_{\beta} \cap\left(c_{\alpha} \cup d_{\alpha}\right) \neq{ }^{*} c_{\alpha}$ (if possible: make them \subset^{*} increasing)
then in the extension by $Q,(\alpha, \beta) \in R$ providing $\left(c_{\alpha} \cap d_{\beta}\right) \cup\left(d_{\alpha} \cap c_{\beta}\right) \neq \emptyset$ satisfies that $\left[\mathbb{X}^{\prime}\right]^{2} \cap R$ is not empty for all uncountable $\mathbb{X}^{\prime} \subset \mathbb{X}=\omega_{1}$ thus this is a freezable gap: no Y such that $Y \cap\left(c_{\alpha} \cup d_{\alpha}\right)={ }^{*} c_{\alpha}$ for all α.

ccc over fin boundaries; per 2-points and embeddings

Theorem: [PFA] boundaries of regular closed subsets are not ccc over fin

ccc over fin boundaries; per 2-points and embeddings

Theorem: [PFA] boundaries of regular closed subsets are not ccc over fin

Remark: CH implies every closed nowhere dense set is a boundary of a regular closed set

ccc over fin boundaries; per 2-points and embeddings

Theorem: [PFA] boundaries of regular closed subsets are not ccc over fin

Let $A \subset \mathbb{N}^{*}$ be regular closed.

ccc over fin boundaries; per 2-points and embeddings

Theorem: [PFA] boundaries of regular closed subsets are not ccc over fin

Let $A \subset \mathbb{N}^{*}$ be regular closed. so $\mathcal{I} \cup \mathcal{J}$ is dense, where $a \in \mathcal{I}$ if $a^{*} \subset A$ and $b \in \mathcal{J}$ if $b^{*} \cap A=\emptyset$

ccc over fin boundaries; per 2-points and embeddings

Theorem: [PFA] boundaries of regular closed subsets are not ccc over fin

Let $A \subset \mathbb{N}^{*}$ be regular closed. so $\mathcal{I} \cup \mathcal{J}$ is dense, where $a \in \mathcal{I}$ if $a^{*} \subset A$ and $b \in \mathcal{J}$ if $b^{*} \cap A=\emptyset$

Lemma: ∂A is ccc over fin implies \mathcal{I} and \mathcal{J} are P -ideals

ccc over fin boundaries; per 2-points and embeddings

Theorem: [PFA] boundaries of regular closed subsets are not ccc over fin

Let $A \subset \mathbb{N}^{*}$ be regular closed. so $\mathcal{I} \cup \mathcal{J}$ is dense, where $a \in \mathcal{I}$ if $a^{*} \subset A$ and $b \in \mathcal{J}$ if $b^{*} \cap A=\emptyset$

Lemma: ∂A is ccc over fin implies \mathcal{I} and \mathcal{J} are P -ideals
let $\left\{a_{n}: n \in \omega\right\} \subset \mathcal{I}$ be pairwise disjoint;

ccc over fin boundaries; per 2-points and embeddings

Theorem: [PFA] boundaries of regular closed subsets are not ccc over fin

Let $A \subset \mathbb{N}^{*}$ be regular closed. so $\mathcal{I} \cup \mathcal{J}$ is dense, where $a \in \mathcal{I}$ if $a^{*} \subset A$ and $b \in \mathcal{J}$ if $b^{*} \cap A=\emptyset$

Lemma: ∂A is ccc over fin implies \mathcal{I} and \mathcal{J} are P-ideals
let $\left\{a_{n}: n \in \omega\right\} \subset \mathcal{I}$ be pairwise disjoint; for each $g \in \mathbb{N}^{\omega}$, let $L_{g}=\bigcup_{n} a_{n} \cap g(n)$.

ccc over fin boundaries; per 2-points and embeddings

Theorem: [PFA] boundaries of regular closed subsets are not ccc over fin
Let $A \subset \mathbb{N}^{*}$ be regular closed. so $\mathcal{I} \cup \mathcal{J}$ is dense, where $a \in \mathcal{I}$ if $a^{*} \subset A$ and $b \in \mathcal{J}$ if $b^{*} \cap A=\emptyset$

Lemma: ∂A is ccc over fin implies \mathcal{I} and \mathcal{J} are P-ideals
let $\left\{a_{n}: n \in \omega\right\} \subset \mathcal{I}$ be pairwise disjoint; for each $g \in \mathbb{N}^{\omega}$, let $L_{g}=\bigcup_{n} a_{n} \cap g(n)$.
since ∂A is ccc over fin there is an $f \in \mathbb{N}^{\omega}$ so that $\partial A \cap\left(L_{g} \backslash L_{f}\right)^{*}$ is empty for all $g \in \mathbb{N}^{\omega}$

ccc over fin boundaries; per 2-points and embeddings

Theorem: [PFA] boundaries of regular closed subsets are not ccc over fin

Let $A \subset \mathbb{N}^{*}$ be regular closed. so $\mathcal{I} \cup \mathcal{J}$ is dense, where $a \in \mathcal{I}$ if $a^{*} \subset A$ and $b \in \mathcal{J}$ if $b^{*} \cap A=\emptyset$

Lemma: ∂A is ccc over fin implies \mathcal{I} and \mathcal{J} are P-ideals
let $\left\{a_{n}: n \in \omega\right\} \subset \mathcal{I}$ be pairwise disjoint; for each $g \in \mathbb{N}^{\omega}$, let $L_{g}=\bigcup_{n} a_{n} \cap g(n)$.
since ∂A is ccc over fin there is an $f \in \mathbb{N}^{\omega}$ so that $\partial A \cap\left(L_{g} \backslash L_{f}\right)^{*}$ is empty for all $g \in \mathbb{N}^{\omega}$
so pick, for each $g, h_{g}: L_{g} \backslash L_{f} \mapsto 2$ so that $h_{g}^{-1}(0) \in \mathcal{I}$ and $h_{g}^{-1}(1) \in \mathcal{J}$.

\mathcal{I} and \mathcal{J} are P-ideals

\mathcal{I} and \mathcal{J} are P-ideals

we just picked, for each $g, h_{g}: L_{g} \backslash L_{f} \mapsto 2$ so that $h_{g}^{-1}(0) \in \mathcal{I}$ and $h_{g}^{-1}(1) \in \mathcal{J}$.

\mathcal{I} and \mathcal{J} are P-ideals

we just picked, for each $g, h_{g}: L_{g} \backslash L_{f} \mapsto 2$ so that $h_{g}^{-1}(0) \in \mathcal{I}$ and $h_{g}^{-1}(1) \in \mathcal{J}$.
the L_{g} 's range over a $P_{\omega_{2}}$-ideal so

\mathcal{I} and \mathcal{J} are P-ideals

we just picked, for each $g, h_{g}: L_{g} \backslash L_{f} \mapsto 2$ so that $h_{g}^{-1}(0) \in \mathcal{I}$ and $h_{g}^{-1}(1) \in \mathcal{J}$.
the L_{g} 's range over a $P_{\omega_{2}}$-ideal so
let $h: \mathbb{N} \backslash L_{f} \mapsto 2 \bmod$ finite extend h_{g} for all $g \in \mathbb{N}^{\omega}$ ccc argument we'll see later

\mathcal{I} and \mathcal{J} are P-ideals

we just picked, for each $g, h_{g}: L_{g} \backslash L_{f} \mapsto 2$ so that $h_{g}^{-1}(0) \in \mathcal{I}$ and $h_{g}^{-1}(1) \in \mathcal{J}$.
the L_{g} 's range over a $P_{\omega_{2}}$-ideal so
let $h: \mathbb{N} \backslash L_{f} \mapsto 2 \bmod$ finite extend h_{g} for all $g \in \mathbb{N}^{\omega}$ ccc argument we'll see later
with $b=h^{-1}(1)$ and $J \subset \omega$ such that $b \cap a_{n}$ is infinite for each n, we have that $\partial A \cap\left(b \cap \cup_{n \in J} a_{n}\right)^{*}$ is not empty; since ccc over fin implies such a J must be finite, we finish that each of \mathcal{I} and \mathcal{J} are P-ideals

now is time for CH * Cohen * OCA trick

we continue with proof that ∂A is not ccc over fin

now is time for CH * Cohen * OCA trick

we continue with proof that ∂A is not ccc over fin
let $\left\{a_{\alpha}, b_{\alpha}: \alpha \in \omega_{1}\right\}$ be disjoint pairs from $\mathcal{I} \times \mathcal{J}$ chosen so as to be cofinal.

now is time for CH * Cohen * OCA trick

we continue with proof that ∂A is not ccc over fin
let $\left\{a_{\alpha}, b_{\alpha}: \alpha \in \omega_{1}\right\}$ be disjoint pairs from $\mathcal{I} \times \mathcal{J}$ chosen so as to be cofinal.
the technique (again, later) produces a proper poset collection of names 1-to-1 $\dot{\rho}: 2^{<\omega} \mapsto \mathbb{N}$ and $\left\{\alpha(f, \xi): \xi \in \omega_{1}, f \in V \cap 2^{\omega}\right\} \subset \omega_{1}$

now is time for CH * Cohen * OCA trick

we continue with proof that ∂A is not ccc over fin
let $\left\{a_{\alpha}, b_{\alpha}: \alpha \in \omega_{1}\right\}$ be disjoint pairs from $\mathcal{I} \times \mathcal{J}$ chosen so as to be cofinal.
the technique (again, later) produces a proper poset collection of names 1-to-1 $\dot{\rho}: 2^{<\omega} \mapsto \mathbb{N}$ and $\left\{\alpha(f, \xi): \xi \in \omega_{1}, f \in V \cap 2^{\omega}\right\} \subset \omega_{1}$
so that $\exists n=n(f, \xi, \eta), k=k(f, \xi, \eta)$ satisfying

$$
\dot{\rho}(f \upharpoonright k)=n \in\left(a_{\alpha(f, \xi)} \cap b_{\alpha(f, \eta)}\right) \cup\left(a_{\alpha(f, \eta)} \cap b_{\alpha(f, \xi)}\right)
$$

now is time for CH * Cohen * OCA trick

we continue with proof that ∂A is not ccc over fin
let $\left\{a_{\alpha}, b_{\alpha}: \alpha \in \omega_{1}\right\}$ be disjoint pairs from $\mathcal{I} \times \mathcal{J}$ chosen so as to be cofinal.
the technique (again, later) produces a proper poset collection of names 1-to-1 $\dot{\rho}: 2^{<\omega} \mapsto \mathbb{N}$ and $\left\{\alpha(f, \xi): \xi \in \omega_{1}, f \in V \cap 2^{\omega}\right\} \subset \omega_{1}$
so that $\exists n=n(f, \xi, \eta), k=k(f, \xi, \eta)$ satisfying

$$
\dot{\rho}(f \upharpoonright k)=n \in\left(a_{\alpha(f, \xi)} \cap b_{\alpha(f, \eta)}\right) \cup\left(a_{\alpha(f, \eta)} \cap b_{\alpha(f, \xi)}\right)
$$

set $C_{f}=\{\rho(f \upharpoonright k): k \in \omega\} \subset \mathbb{N}$, and $\Gamma_{f}=\left\{\alpha(f, \xi): \xi \in \omega_{1}\right\}$

continued

continued

fix any "generic" filter meeting ω_{1}-many dense subsets of this iteration of proper posets, so as to have some uncountable $\mathcal{F} \subset 2^{<\omega}$ and $\left\{\left(a_{\alpha}, b_{\alpha}\right): \alpha \in \omega_{1}\right\} \subset \mathcal{I} \times \mathcal{J}$, and values for $\alpha(f, \xi), n(f, \xi, \eta), k(f, \xi, \eta)$ for all $f \in \mathcal{F}$ and $\xi \in \omega_{1}$.

continued

fix any "generic" filter meeting ω_{1}-many dense subsets of this iteration of proper posets, so as to have some uncountable $\mathcal{F} \subset 2^{<\omega}$ and $\left\{\left(a_{\alpha}, b_{\alpha}\right): \alpha \in \omega_{1}\right\} \subset \mathcal{I} \times \mathcal{J}$, and values for $\alpha(f, \xi), n(f, \xi, \eta), k(f, \xi, \eta)$ for all $f \in \mathcal{F}$ and $\xi \in \omega_{1}$.
so that for $f \in \mathcal{F}, \xi \neq \eta \in \omega_{1}$,

$$
\rho(f \upharpoonright k)=n \in\left(a_{\alpha(f, \xi)} \cap b_{\alpha(f, \eta)}\right) \cup\left(a_{\alpha(f, \eta)} \cap b_{\alpha(f, \xi)}\right)
$$

continued

fix any "generic" filter meeting ω_{1}-many dense subsets of this iteration of proper posets, so as to have some uncountable $\mathcal{F} \subset 2^{<\omega}$ and $\left\{\left(a_{\alpha}, b_{\alpha}\right): \alpha \in \omega_{1}\right\} \subset \mathcal{I} \times \mathcal{J}$, and values for $\alpha(f, \xi), n(f, \xi, \eta), k(f, \xi, \eta)$ for all $f \in \mathcal{F}$ and $\xi \in \omega_{1}$.
so that for $f \in \mathcal{F}, \xi \neq \eta \in \omega_{1}$,

$$
\rho(f \upharpoonright k)=n \in\left(a_{\alpha(f, \xi)} \cap b_{\alpha(f, \eta)}\right) \cup\left(a_{\alpha(f, \eta)} \cap b_{\alpha(f, \xi)}\right)
$$

we obtain that $C_{f}^{*} \cap \partial A$ is non-empty for all $f \in \mathcal{F}$ because

$$
\partial A \supset \overline{\bigcup_{\alpha \in \Gamma_{f}}\left(a_{\alpha} \cap C_{f}\right)^{*}} \cap \overline{\bigcup_{\alpha \in \Gamma_{f}}\left(b_{\alpha} \cap C_{f}\right)^{*}} \neq \emptyset
$$

okay, we freeze a gap

okay, we freeze a gap

we have the gap $\left\{a_{\alpha}, b_{\alpha}: \alpha \in \omega_{1}\right\}$; mod finite increasing and $a_{\alpha} \cap b_{\alpha}$ empty. (enough that a_{α} 's increase)

okay, we freeze a gap

we have the gap $\left\{a_{\alpha}, b_{\alpha}: \alpha \in \omega_{1}\right\}$; mod finite increasing and $a_{\alpha} \cap b_{\alpha}$ empty. (enough that a_{α} 's increase)
a pair $(\rho, H) \in Q$ if there is an n with $\rho: 2^{<n} \stackrel{1-1}{\mapsto} \mathbb{N}$, and $H \in\left[\omega_{1}\right]^{<\omega}$ is such that for each $\alpha \neq \beta \in H$, and each $t \in 2^{n}$, there is a $k<n$ with $\rho(t \upharpoonright k) \in\left(a_{\alpha} \cap b_{\beta}\right) \cup\left(a_{\beta} \cap b_{\alpha}\right)$

okay, we freeze a gap

we have the gap $\left\{a_{\alpha}, b_{\alpha}: \alpha \in \omega_{1}\right\}$; mod finite increasing and $a_{\alpha} \cap b_{\alpha}$ empty. (enough that a_{α} 's increase)
a pair $(\rho, H) \in Q$ if there is an n with $\rho: 2^{<n} \stackrel{1-1}{\mapsto} \mathbb{N}$, and $H \in\left[\omega_{1}\right]^{<\omega}$ is such that for each $\alpha \neq \beta \in H$, and each $t \in 2^{n}$, there is a $k<n$ with $\rho(t \upharpoonright k) \in\left(a_{\alpha} \cap b_{\beta}\right) \cup\left(a_{\beta} \cap b_{\alpha}\right)$
assume $\left\{\left(\rho, H_{\xi}\right): \xi \in \omega_{1}\right\} \subset Q$; and that $H_{\xi} \cap H_{\eta}=H$ for all $\xi \neq \eta \in \omega_{1}$; and pairwise "isomorphic"
set $A_{\xi}=\bigcap_{\alpha \in H_{\xi} \backslash H} a_{\alpha}$ and $B_{\xi}=\bigcap_{\alpha \in H_{\xi} \backslash H} b_{\alpha}$

okay, we freeze a gap

we have the gap $\left\{a_{\alpha}, b_{\alpha}: \alpha \in \omega_{1}\right\}$; mod finite increasing and $a_{\alpha} \cap b_{\alpha}$ empty. (enough that a_{α} 's increase)
a pair $(\rho, H) \in Q$ if there is an n with $\rho: 2^{<n} \stackrel{1-1}{\mapsto} \mathbb{N}$, and $H \in\left[\omega_{1}\right]^{<\omega}$ is such that for each $\alpha \neq \beta \in H$, and each $t \in 2^{n}$, there is a $k<n$ with $\rho(t \upharpoonright k) \in\left(a_{\alpha} \cap b_{\beta}\right) \cup\left(a_{\beta} \cap b_{\alpha}\right)$
assume $\left\{\left(\rho, H_{\xi}\right): \xi \in \omega_{1}\right\} \subset Q$; and that $H_{\xi} \cap H_{\eta}=H$ for all $\xi \neq \eta \in \omega_{1}$; and pairwise "isomorphic"
set $A_{\xi}=\bigcap_{\alpha \in H_{\xi} \backslash H} a_{\alpha}$ and $B_{\xi}=\bigcap_{\alpha \in H_{\xi} \backslash H} b_{\alpha}$ Let $I_{0}=J_{0}=\omega_{1}$, $S_{0}=\left\{i: \exists^{\omega_{1}} \xi \in I_{0} \quad i \in A_{\xi}\right\}$ and $T_{0}=\left\{i: \exists^{\omega_{1}} \eta \in J_{0} \quad i \in B_{\xi}\right\}$

okay, we freeze a gap

we have the gap $\left\{a_{\alpha}, b_{\alpha}: \alpha \in \omega_{1}\right\}$; mod finite increasing and $a_{\alpha} \cap b_{\alpha}$ empty. (enough that a_{α} 's increase)
a pair $(\rho, H) \in Q$ if there is an n with $\rho: 2^{<n} \stackrel{1-1}{\mapsto} \mathbb{N}$, and $H \in\left[\omega_{1}\right]^{<\omega}$ is such that for each $\alpha \neq \beta \in H$, and each $t \in 2^{n}$, there is a $k<n$ with $\rho(t \upharpoonright k) \in\left(a_{\alpha} \cap b_{\beta}\right) \cup\left(a_{\beta} \cap b_{\alpha}\right)$
assume $\left\{\left(\rho, H_{\xi}\right): \xi \in \omega_{1}\right\} \subset Q$; and that $H_{\xi} \cap H_{\eta}=H$ for all $\xi \neq \eta \in \omega_{1}$; and pairwise "isomorphic"
set $A_{\xi}=\bigcap_{\alpha \in H_{\xi} \backslash H} a_{\alpha}$ and $B_{\xi}=\bigcap_{\alpha \in H_{\xi} \backslash H} b_{\alpha}$ Let $I_{0}=J_{0}=\omega_{1}$, $S_{0}=\left\{i: \exists^{\omega_{1}} \xi \in I_{0} \quad i \in A_{\xi}\right\}$ and $T_{0}=\left\{i: \exists^{\omega_{1}} \eta \in J_{0} \quad i \in B_{\xi}\right\}$
there is $i_{0} \in S_{0} \cap T_{0}$; set $I_{1}=\left\{\xi \in I_{0}: i_{0} \in A_{\xi}\right\}$;
$J_{1}=\left\{\eta \in J_{0}: i_{0} \in B_{\eta}\right\}$

okay, we freeze a gap

we have the gap $\left\{a_{\alpha}, b_{\alpha}: \alpha \in \omega_{1}\right\}$; mod finite increasing and $a_{\alpha} \cap b_{\alpha}$ empty. (enough that a_{α} 's increase)
a pair $(\rho, H) \in Q$ if there is an n with $\rho: 2^{<n} \stackrel{1-1}{\mapsto} \mathbb{N}$, and $H \in\left[\omega_{1}\right]^{<\omega}$ is such that for each $\alpha \neq \beta \in H$, and each $t \in 2^{n}$, there is a $k<n$ with $\rho(t \upharpoonright k) \in\left(a_{\alpha} \cap b_{\beta}\right) \cup\left(a_{\beta} \cap b_{\alpha}\right)$
assume $\left\{\left(\rho, H_{\xi}\right): \xi \in \omega_{1}\right\} \subset Q$; and that $H_{\xi} \cap H_{\eta}=H$ for all $\xi \neq \eta \in \omega_{1}$; and pairwise "isomorphic"
set $A_{\xi}=\bigcap_{\alpha \in H_{\xi} \backslash H} a_{\alpha}$ and $B_{\xi}=\bigcap_{\alpha \in H_{\xi} \backslash H} b_{\alpha}$ Let $I_{0}=J_{0}=\omega_{1}$, $S_{0}=\left\{i: \exists^{\omega_{1}} \xi \in I_{0} \quad i \in A_{\xi}\right\}$ and $T_{0}=\left\{i: \exists^{\omega_{1}} \eta \in J_{0} \quad i \in B_{\xi}\right\}$
there is $i_{0} \in S_{0} \cap T_{0}$; set $I_{1}=\left\{\xi \in I_{0}: i_{0} \in A_{\xi}\right\}$;
$J_{1}=\left\{\eta \in J_{0}: i_{0} \in B_{\eta}\right\}$ repeat 2^{n} times getting $\left\{i_{t}\right\}_{t \in 2^{n}}$

