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0. Introduction I. CH

Connecting Theme

Suppose that f : N∗ 7→ K is precisely 2-to-1 (distinct from
≤2-to-1). What can then be said of K and f (how N∗-like is K ?)

What are the results, what are the methods needed, and what
are the connected questions along the way?

History to this question (of R. Levy): ?Glazer? and van
Douwen’s maximal space

E is a vD space if there is a 1-to-1 map f : N 7→ E such that the
extension f = f β : βN 7→ βE is ≤2-to-1; and such a space
exists. And βE can be embedded into βN so that f is a retract.
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2-to-1 maps

[vD] for each y ∈ βE , |f−1(y)| = 1 iff y is a far point of E (not a
limit of any countable (closed) discrete set).

Question 1 Does every countable space have a far point?
Does every vD space?

Unfortunately, even if E had no far points, f � N∗ is still 1-to-1 at
the points of f−1(E). MActble implies all countable spaces have
far points.

we could ask many questions about vD spaces, but the
question is about 2-to-1 maps and images of N∗ (not of βN).
e.g. Question 2 if N∗ maps ≤ 2-to-1 onto K ⊂ N∗, does the
map lift to a (≤ 2-to-1) map on(to) βN?
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Levy’s questions: Let f : N∗ 7→ K be 2-to-1

[Levy `] countable discrete subsets of K have closures
homeomorphic to βN. Hence K has weight c.

1. is K homeomorphic to N∗?
2. is f locally 1-to-1, i.e. N∗ ⊕ N∗ 7→ N∗

3. is f somewhere 1-to-1 (not irreducible)
4. is K non-separable, non-ccc?
5. are countable sets C∗-embedded?

Item 3 is our starting point for investigation.
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Could f be irreducible?

For each a ⊂ N,

f [a∗] ∩ f [(N \ a)∗] ⊂ K is useful to consider

pull this back to N∗:

Define Ja = a∗ ∩ f−1(f [(N \ a)∗].

Ja is homeomorphic to JN\a (via f−1 ◦ f ); and both to
f [a∗] ∩ f [(N \ a)∗] ⊂ K .

If f is irreducible, each are nowhere dense.

then {Ja : a ∈ P(N)} is a covering of N∗ by nwd sets, n(N∗) ≤ c

this connects to studied questions about covering N∗ by nwd
sets
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For example

Fact: if vD spaces have “lots” of far points, then JA is a discrete
weak P-set of Z

Question 3 Can N∗ be covered by (discrete) [weak] P-sets?
for weak P-sets, I only know "NO" if CH

Question 4 Con(MA + no P-set cover) but PFA or MA`?
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Back to 2-to-1: the CH story is very elegant
There is a dense open U0 ⊂ K such that f is locally 1-to-1 on
f−1[U0] (stronger than somewhere 1-to-1)

e.g. put a ∈ If if f is 2-to-1 and locally 1-to-1 on a∗; a = b ∪ c,
f [b∗] = f [c∗] = K \ f [(N \ a)∗]
we would say trivially 2-to-1 on a∗

Set K1 = K \ U0 and X1 = f−1[K1], hence f : X1 7→ K1 is 2-to-1
(and repeat)

think of N∗ as A0 ⊕X1 B0, each A0 \ X1 and B0 \ X1 mapping
1-to-1 onto U0 (hence essentially to each other)

need a picture

similarly there is U1 ⊂ K1 and A1 ⊕X2 B1 with
X2 = f−1[K2 = (K1 \ U1)]
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A0 B0

X1

f
U0 ≈ A0 \ X1

K1

X1
= A1 ∪ B1

X2

A1 B1

K2

U1

if, e.g. K2 = ∅
i.e. U1 = K1

pick clopen set W ⊂ N∗ such
that W ∩ X1 = A1

K \f [W ] can be made clopen;
etc, etc, K is Parovicenko
can be shown

` Kn IS empty for some n ∈ ωcan all this happen?

THUS CH implies K ≈ N∗
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tie-points and propeller points
Say that x ∈ N∗ is a tie-point if there are closed sets A, B
covering N∗ and {x} = A′ ∩ B′; denote this as N∗ = A⊕x B.

We could further measure τ(x) ≥ k by increasing the number
of wings

say that x is a propeller point (?symmetric tie-point?) if
N∗ = A⊕x B and there is an autohomeomorphism h such that
{x} = fix(h) and h[A] = B (i.e. h spins the propeller)

if x1, x2 are propeller points, then there is a 2-to-1 f on N∗ such
that K ≈ A1 ⊕x1

x2
B2, where

N∗ = A1 ⊕x1 B1 and N∗ = A2 ⊕x2 B2 witness the propellers

I do not know if it’s the same to ask for x such that there is an
involution f on N∗ with {x} = fix(f ); but I think it is interesting to
investigate possible “values” for fix(f )
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0. Introduction I. CH

tie-points and propeller points
Say that x ∈ N∗ is a tie-point if there are closed sets A, B
covering N∗ and {x} = A′ ∩ B′; denote this as N∗ = A⊕x B.

We could further measure τ(x) ≥ k by increasing the number
of wings

say that x is a propeller point (?symmetric tie-point?) if
N∗ = A⊕x B and there is an autohomeomorphism h such that
{x} = fix(h) and h[A] = B (i.e. h spins the propeller)

if x1, x2 are propeller points, then there is a 2-to-1 f on N∗ such
that K ≈ A1 ⊕x1

x2
B2, where

N∗ = A1 ⊕x1 B1 and N∗ = A2 ⊕x2 B2 witness the propellers

I do not know if it’s the same to ask for x such that there is an
involution f on N∗ with {x} = fix(f ); but I think it is interesting to
investigate possible “values” for fix(f )



0. Introduction I. CH

tie-points and propeller points
Say that x ∈ N∗ is a tie-point if there are closed sets A, B
covering N∗ and {x} = A′ ∩ B′; denote this as N∗ = A⊕x B.

We could further measure τ(x) ≥ k by increasing the number
of wings

say that x is a propeller point (?symmetric tie-point?) if
N∗ = A⊕x B and there is an autohomeomorphism h such that
{x} = fix(h) and h[A] = B (i.e. h spins the propeller)

if x1, x2 are propeller points, then there is a 2-to-1 f on N∗ such
that K ≈ A1 ⊕x1

x2
B2, where

N∗ = A1 ⊕x1 B1 and N∗ = A2 ⊕x2 B2 witness the propellers

I do not know if it’s the same to ask for x such that there is an
involution f on N∗ with {x} = fix(f ); but I think it is interesting to
investigate possible “values” for fix(f )



0. Introduction I. CH

tie-points and propeller points
Say that x ∈ N∗ is a tie-point if there are closed sets A, B
covering N∗ and {x} = A′ ∩ B′; denote this as N∗ = A⊕x B.

We could further measure τ(x) ≥ k by increasing the number
of wings

say that x is a propeller point (?symmetric tie-point?) if
N∗ = A⊕x B and there is an autohomeomorphism h such that
{x} = fix(h) and h[A] = B (i.e. h spins the propeller)

if x1, x2 are propeller points, then there is a 2-to-1 f on N∗ such
that K ≈ A1 ⊕x1

x2
B2, where

N∗ = A1 ⊕x1 B1 and N∗ = A2 ⊕x2 B2 witness the propellers

I do not know if it’s the same to ask for x such that there is an
involution f on N∗ with {x} = fix(f ); but I think it is interesting to
investigate possible “values” for fix(f )



0. Introduction I. CH

propellers under CH and many copies of N∗

Under CH, every point x of N∗ is a tie-point such that
N∗ = A⊕x B with, in addition, each of A ≈ B ≈ N∗ (regular
closed copies of N∗);

x is a propeller point iff x is a P-point.

for any compact 0-dim’l space X of weight ≤c, (e.g. X = ω + 1),
(ω × X )∗ is homeomorphic to N∗

using E = {2n : n ∈ ω} and O = ω \ E , we see that setting
A = (ω × (E ∪ {ω}))∗ and B = (ω × (O ∪ {ω}))∗
show that N∗ ≈ (ω × {ω})∗ ≈ A⊕N∗ B
with N∗ as a propeller set, hence K2 6= ∅ (and iterate)

also for any ultrafilter U ∈ N∗, considering (ω × ω + 1)∗U (the
U-limits in the growth) exemplifies there is a propeller point

my best guess for a K 6≈ N∗ is to have propeller points
N∗ = Ai ⊕xi Bi so that A1 6≈ N∗ and/or A1 ⊕x1

x2
B2 6≈ N∗
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some PFA tricks; tie-points; and regular closed sets

Can there be tie-points? and if there are, can A ≈ N∗?

Major open problem: Question 5 If f embeds N∗ into N∗, is
there a lifting from βN to βN?

an ideal I ⊂ P(N) is ccc over fin if there is no uncountable
almost disjoint family in I+;

similarly a closed set K ⊂ N∗ can be said to be ccc over fin if
there is no uncountable family of disjoint clopen subsets of N∗

each hitting K (this is more general than requiring that K is
contained in a ccc space)
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0. Introduction I. CH

the CH, Cohen + OCA tricks

Let I,J etc. be families from P(N)

CH trick <ω1ω2  if every ℵ1-sized subcollection has a nice
extension, then so must I,J (in each “proper” extension)

[Farah?] <ω2  usually no harm done but might be useful

OCA trick: If X ⊂ P(N) and R ⊂ [P(N)]2 is open [often simply
x ∩ y 6= ∅], and if ¬∃X =

⋃
n Xn such that

⋃
n[Xn]

2 ∩ R is empty,
then there is a proper poset QR forcing an R-homogeneous
{xα : α ∈ ω1} ⊂ X. so, by PFA, such a sequence actually exists

e.g. if xα = (Iα, Jα) ∈ I × J with Iα ∩ Jα = ∅, and for α 6= β,
(Iα ∩ Jβ) ∪ (Jα ∩ Iβ) 6= ∅, then

⋃
α I∗α ∩

⋃
α J∗α 6= ∅
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gaps and such
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α I∗α ∩

⋃
α J∗α 6= ∅

CH trick plus OCA trick implies no (ω2, κ)-gaps for κ /∈ {1, ω}

or if each xα = hα : N 7→ N is a partial function and hα ∪ hβ is
not a function for α 6= β, then there is no common mod finite
extension
so if H is a coherent family of functions and {dom(h) : h ∈ H}
is a Pω2-ideal, then THERE IS a common mod finite extension
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then there is a proper poset QR forcing an R-homogeneous
{xα : α ∈ ω1} ⊂ X. so, by PFA, such a sequence actually exists

e.g. if xα = (Iα, Jα) ∈ I × J with Iα ∩ Jα = ∅, and for α 6= β,
(Iα ∩ Jβ) ∪ (Jα ∩ Iβ) 6= ∅, then

⋃
α I∗α ∩

⋃
α J∗α 6= ∅

CH trick plus OCA trick implies no (ω2, κ)-gaps for κ /∈ {1, ω}

or if each xα = hα : N 7→ N is a partial function and hα ∪ hβ is
not a function for α 6= β, then there is no common mod finite
extension
so if H is a coherent family of functions and {dom(h) : h ∈ H}
is a Pω2-ideal, then THERE IS a common mod finite extension



0. Introduction I. CH

gaps and such

OCA trick: If X ⊂ P(N) and R ⊂ [P(N)]2 is open [often simply
x ∩ y 6= ∅], and if ¬∃X =

⋃
n Xn such that

⋃
n[Xn]

2 ∩ R is empty,
then there is a proper poset QR forcing an R-homogeneous
{xα : α ∈ ω1} ⊂ X. so, by PFA, such a sequence actually exists

e.g. if xα = (Iα, Jα) ∈ I × J with Iα ∩ Jα = ∅, and for α 6= β,
(Iα ∩ Jβ) ∪ (Jα ∩ Iβ) 6= ∅, then

⋃
α I∗α ∩

⋃
α J∗α 6= ∅

CH trick plus OCA trick implies no (ω2, κ)-gaps for κ /∈ {1, ω}

or if each xα = hα : N 7→ N is a partial function and hα ∪ hβ is
not a function for α 6= β, then there is no common mod finite
extension

so if H is a coherent family of functions and {dom(h) : h ∈ H}
is a Pω2-ideal, then THERE IS a common mod finite extension



0. Introduction I. CH

gaps and such

OCA trick: If X ⊂ P(N) and R ⊂ [P(N)]2 is open [often simply
x ∩ y 6= ∅], and if ¬∃X =

⋃
n Xn such that

⋃
n[Xn]

2 ∩ R is empty,
then there is a proper poset QR forcing an R-homogeneous
{xα : α ∈ ω1} ⊂ X. so, by PFA, such a sequence actually exists

e.g. if xα = (Iα, Jα) ∈ I × J with Iα ∩ Jα = ∅, and for α 6= β,
(Iα ∩ Jβ) ∪ (Jα ∩ Iβ) 6= ∅, then

⋃
α I∗α ∩

⋃
α J∗α 6= ∅

CH trick plus OCA trick implies no (ω2, κ)-gaps for κ /∈ {1, ω}

or if each xα = hα : N 7→ N is a partial function and hα ∪ hβ is
not a function for α 6= β, then there is no common mod finite
extension
so if H is a coherent family of functions and {dom(h) : h ∈ H}
is a Pω2-ideal, then THERE IS a common mod finite extension



0. Introduction I. CH

forcing a gap from Shelah-Steprans

Start with PFA, use the CH trick to pass to the forcing extension
by <ω1ω2. This leaves P(N) unchanged.

let Q be a ccc poset of cardinality ω1 and {Ẏα : α ∈ ω1}
enumerate all (nice) Q-names of subsets of N.

inductively (or otherwise) choose {(cα, dα) : α ∈ ω1} ⊂
V ∩ P(N), so that, for β < α, Q Ẏβ ∩ (cα ∪ dα) 6=∗ cα

(if possible: make them ⊂∗ increasing)

then in the extension by Q, (α, β) ∈ R providing
(cα ∩ dβ) ∪ (dα ∩ cβ) 6= ∅ satisfies that [X′]2 ∩ R is not empty for
all uncountable X′ ⊂ X = ω1 thus this is a freezable gap: no Y
such that Y ∩ (cα ∪ dα) =∗ cα for all α.
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(if possible: make them ⊂∗ increasing)

then in the extension by Q, (α, β) ∈ R providing
(cα ∩ dβ) ∪ (dα ∩ cβ) 6= ∅ satisfies that [X′]2 ∩ R is not empty for
all uncountable X′ ⊂ X = ω1

thus this is a freezable gap: no Y
such that Y ∩ (cα ∪ dα) =∗ cα for all α.



0. Introduction I. CH

forcing a gap from Shelah-Steprans

Start with PFA, use the CH trick to pass to the forcing extension
by <ω1ω2. This leaves P(N) unchanged.

let Q be a ccc poset of cardinality ω1 and {Ẏα : α ∈ ω1}
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0. Introduction I. CH

ccc over fin boundaries; per 2-points and embeddings

Theorem: [PFA] boundaries of regular closed subsets are not
ccc over fin

Remark: CH implies every closed nowhere dense set is a
boundary of a regular closed set
Let A ⊂ N∗ be regular closed. so I ∪ J is dense, where a ∈ I
if a∗ ⊂ A and b ∈ J if b∗ ∩ A = ∅

Lemma: ∂A is ccc over fin implies I and J are P-ideals

let {an : n ∈ ω} ⊂ I be pairwise disjoint;

for each g ∈ Nω, let Lg =
⋃

n an ∩ g(n).

since ∂A is ccc over fin there is an f ∈ Nω so that ∂A∩ (Lg \ Lf )
∗

is empty for all g ∈ Nω

so pick, for each g, hg : Lg \ Lf 7→ 2 so that h−1
g (0) ∈ I and

h−1
g (1) ∈ J .
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I and J are P-ideals

we just picked, for each g, hg : Lg \ Lf 7→ 2 so that h−1
g (0) ∈ I

and h−1
g (1) ∈ J .

the Lg ’s range over a Pω2-ideal so

let h : N \ Lf 7→ 2 mod finite extend hg for all g ∈ Nω

ccc argument we’ll see later

with b = h−1(1) and J ⊂ ω such that b ∩ an is infinite for each n,
we have that ∂A ∩

(
b ∩

⋃
n∈J an

)∗ is not empty;
since ccc over fin implies such a J must be finite, we finish that
each of I and J are P-ideals
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0. Introduction I. CH

now is time for CH * Cohen * OCA trick

we continue with proof that ∂A is not ccc over fin

let {aα, bα : α ∈ ω1} be disjoint pairs from I × J chosen so as
to be cofinal.

the technique (again, later) produces a proper poset collection
of names 1-to-1 ρ̇ : 2<ω 7→ N and
{α(f , ξ) : ξ ∈ ω1, f ∈ V ∩ 2ω} ⊂ ω1

so that ∃n = n(f , ξ, η), k = k(f , ξ, η) satisfying

ρ̇(f � k) = n ∈ (aα(f ,ξ) ∩ bα(f ,η)) ∪ (aα(f ,η) ∩ bα(f ,ξ))

set Cf = {ρ(f � k) : k ∈ ω} ⊂ N, and Γf = {α(f , ξ) : ξ ∈ ω1}
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0. Introduction I. CH

continued

fix any “generic” filter meeting ω1-many dense subsets of this
iteration of proper posets, so as to have some uncountable
F ⊂ 2<ω and {(aα, bα) : α ∈ ω1} ⊂ I × J , and values for
α(f , ξ), n(f , ξ, η), k(f , ξ, η) for all f ∈ F and ξ ∈ ω1.

so that for f ∈ F , ξ 6= η ∈ ω1,

ρ(f � k) = n ∈ (aα(f ,ξ) ∩ bα(f ,η)) ∪ (aα(f ,η) ∩ bα(f ,ξ))

we obtain that C∗
f ∩ ∂A is non-empty for all f ∈ F because

∂A ⊃
⋃

α∈Γf

(aα ∩ Cf )∗ ∩
⋃

α∈Γf

(bα ∩ Cf )∗ 6= ∅
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F ⊂ 2<ω and {(aα, bα) : α ∈ ω1} ⊂ I × J , and values for
α(f , ξ), n(f , ξ, η), k(f , ξ, η) for all f ∈ F and ξ ∈ ω1.

so that for f ∈ F , ξ 6= η ∈ ω1,

ρ(f � k) = n ∈ (aα(f ,ξ) ∩ bα(f ,η)) ∪ (aα(f ,η) ∩ bα(f ,ξ))

we obtain that C∗
f ∩ ∂A is non-empty for all f ∈ F because

∂A ⊃
⋃

α∈Γf

(aα ∩ Cf )∗ ∩
⋃

α∈Γf

(bα ∩ Cf )∗ 6= ∅
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okay, we freeze a gap

we have the gap {aα, bα : α ∈ ω1}; mod finite increasing and
aα ∩ bα empty. (enough that aα’s increase)

a pair (ρ, H) ∈ Q if there is an n with ρ : 2<n 1−17→ N, and
H ∈ [ω1]

<ω is such that

for each α 6= β ∈ H, and each t ∈ 2n, there is a k < n with
ρ(t � k) ∈ (aα ∩ bβ) ∪ (aβ ∩ bα)

assume {(ρ, Hξ) : ξ ∈ ω1} ⊂ Q; and that Hξ ∩ Hη = H for all
ξ 6= η ∈ ω1; and pairwise “isomorphic”

set Aξ =
⋂

α∈Hξ\H aα and Bξ =
⋂

α∈Hξ\H bα Let I0 = J0 = ω1,
S0 = {i : ∃ω1ξ ∈ I0 i ∈ Aξ} and T0 = {i : ∃ω1η ∈ J0 i ∈ Bξ}

there is i0 ∈ S0 ∩ T0; set I1 = {ξ ∈ I0 : i0 ∈ Aξ};
J1 = {η ∈ J0 : i0 ∈ Bη} repeat 2n times getting {it}t∈2n
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